
University of Kent

School of Economics Discussion Papers

Reverse mode differentiation for DSGE models

Alfred Duncan

July 2021

KDPE 2108

http://upload.wikimedia.org/wikipedia/en/8/8e/Kent_Coat_of_Arms.jpg

Reverse mode differentiation for DSGE models

Alfred Duncan†

University of Kent

This version: July 2021

Abstract

This paper provides a reverse mode derivative for DSGE models. Reverse

mode differentiation enables the efficient computation of gradients from the

model likelihood to the model parameters. These gradients can then be used

by derivative based sampling algorithms including the No U-Turn Sampler.

Benchmarks are provided using a small scale New Keynesian model. Our

benchmarks demonstrate that MCMC chains generated using the No U-turn

Sampler converge much more quickly than those generated using Metropolis

Hastings.

Key words: DSGE, Reverse mode differentiation, Hamiltonian Monte Carlo,

No U-Turn Sampler, Bayesian estimation.

JEL Codes: C11,C13,C32.

The author would like to thank Sylvain Barde for helpful discussions and

suggestions. All errors are my own.

† University of Kent, School of Economics. Email a.j.m.duncan@kent.ac.uk.

1

1 Introduction

This paper provides a reverse mode derivative, or pullback, for DSGE mod-

els. Reverse mode differentiation supports efficient calculation of gradients

from the model likelihood to the model parameters, and enables the use of

derivative based sampling algorithms including Hamiltonian Monte Carlo

and the No U-Turn Sampler (NUTS hereafter) introduced by Hoffman and

Gelman (2014).

An implementation in Julia language is provided along with benchmarks.1

Our benchmarks use the small-scale New Keynesian model described by An

and Schorfheide (2007). Our benchmarks show that MCMC chains generated

by NUTS, which relies on our pullback, converge much more quickly than

chains generated by Metropolis Hastings (MH hereafter), a popular sampling

algorithm that does not rely on derivative information.

The closest related paper is Farkas and Tatar (2020), who demonstrate that

the Binder and Pesaran (1997) DSGE solution algorithm can be algorithmi-

cally differentiated by reverse differentiation libraries. The method provided

in this paper is independent of the solution algorithm, and can be used in

combination with efficient eigensystem based solution algorithms.

2 The problem

We start with the Blanchard and Kahn (1980) canonical form of a log-

linearised DSGE model. Our solution can be easily adapted to other canonical
1 Codes are available at https://github.com/alfredjmduncan/ReverseDiffDSGE.jl

2

forms, including the Gensys (Sims 2002) and AIM (Anderson and Moore 1985)

algorithms. Our derivation does not rely on any of the internal computations

of the solution method.

B

 x′

E[y′]

 = A

 x

y

+Gε

The algorithm described by Blanchard and Kahn (BK hereafter) solves for

N,L,C,D such that

y = −Nx− Lε

x′ = Cx+Dε

In order to use gradient-based Markov chain Monte Carlo methods including

NUTS, we must differentiate the likelihood ll of our model, conditional upon

our observed data, with respect to the structural parameters of the model,

Θ.

Θ −→ B,A,G −→ C,D,N,L −→ ll

Structural CF Canonical BK Solved Kalman log-

parameters form model filter likelihood

We will calculate our derivatives using reverse mode differentiation. Kalman

filter packages with support for reverse mode differentiation are widely avail-

able, and reverse mode differentiation of the canonical form is straightforward,

or can be handled by modern modelling languages. To our knowledge, this

3

paper is the first to provide a pullback for the solved DSGE with respect to

its canonical form. Without loss of generality, we denote the pullback for B

by B̄, where B̄ is the derivative of the log-likelihood ll with respect to B,

expressed in terms of C̄, D̄, N̄ , L̄. The matrix B̄ shares the same dimensions

as B.

Following Blanchard and Kahn (1980), we partition the matrices B,A,G as

follows,

B =

 B11 B12

B21 B22

 , A =

 A11 A12

A21 A22

 , G =

 G1

G2


where B11, A11 are nx × nx, and G1 is nx × nε.

Proposition 1 The DSGE pullback can be expressed as follows:

Ā

Ā11 = −β−1
1
′ (
β′2W − C̄

)
Ā12 = −β−1

1
′ (
β′2Ā22 + C̄N ′ + D̄L′

)
Ā21 = W Ā22 = −WN ′ −QL′

B̄

B̄11 = β−1
1
′ (
β′2B̄21 − (C̄C ′ + D̄D′)

)
B̄12 = −B̄11N

′

B̄21 = −WC ′ −QD′ B̄22 = −B̄21N
′

Ḡ

Ḡ1 = −β−1
1
′ (
β′2Q+ D̄

)
Ḡ2 = Q

4

where

β1 = B11 −B12N, β2 = B21 −B22N

and where W and Q can be expressed as follows:

Γ = −
(
C ′ ⊗ (B22 − β2β

−1
1 B12) + Inx ⊗ (β2β

−1
1 A12 −A22)

)′
w = Γ\vec

(
N̄ + (B22 − β2β

−1
1 B12)′QD′ +B′12β

−1
1
′(C̄C ′ + D̄D′)−A′12β

−1
1
′
C̄
)

W = reshape(w, ny, nx)

Q = −(β2β
−1
1 A12 −A22)′\

(
L̄− (β−1

1 A12)′D̄
)

The proof of Proposition 1 can be found in Appendix A.

3 Implementation and Benchmarks

Our example implementation is written in Julia, using Zygote.jl for

reverse mode differentiation, and Turing.jl for MCMC sampling. Our

solution can be easily adapted to other programming languages with

reverse differentiation libraries. The model used for all of our benchmarks

is the small scale New Keynesian model of An and Schorfheide (2007).

A full description is provided in Appendix B. Codes are available at

https://github.com/alfredjmduncan/ReverseDiffDSGE.jl.

5

We provide an example estimation, drawing parameter values from the prior

distribution of the An and Schorfheide (2007) model. We compare NUTS

with MH, where NUTS utilises our pullback. For each sample, we draw

parameter values from the prior distributions (based on those given by Herbst

and Schorfheide (2016)), we then generate 100 periods of sample data, and

estimate the model parameters on the sample data.

We record the Gelman-Rubin and R-hat convergence diagnostics (Gelman

and Rubin 1992). The Gelman-Rubin diagnostic is a measure of the con-

vergence of multiple parallel chains. The R-hat diagnostic is a test for

non-stationarity within an MCMC chain. For both measures, values close to

one indicate convergence of the MCMC chains. Figure 1 shows the results of

our benchmarks. The No U-Turn Sampler takes much more time per sample

than MH, but converges much more quickly.

Next, we provide an example estimation based on a single draw from the

prior distribution of the model. We generate 100 periods of simulated data,

and estimate the model parameters using NUTS (with 10 000 iterations

per chain) and MH (with 1 500 000 iterations per chain). Each estimation

is computed with 4 chains. We plot the mean and variance of parameter

estimates, by elapsed time, and by chain. The results of the exercise are

shown in are shown Figure 2. The results give a visual representation of what

we have seen in Figure 1; even after 1.5 million iterations, the MH chains

have not converged. The No U-turn sampler chains converge very quickly.

6

Figure 1: Convergence diagnostics for NUTS and MH

0 5 10 15 20 25 30 35

No U-turn Sampler

500

1 000

Metropolis Hastings

250 000

500 000

1 000 000

Sampling algorithm
Iterations per chain Elapsed time (minutes, median)

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

500

1 000

250 000

500 000

1 000 000

Gelman-Rubin diagnostic (median)

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

500

1 000

250 000

500 000

1 000 000

R-hat (median)

Notes: Each sampler is run with four parallel chains. N = 20. For both

the Gelman-Rubin diagnostic and the R-hat diagnostic, values close to one

indicate convergence.

7

Figure 2: Mean and variance of posterior distributions for four parallel

MCMC chains generated by NUTS (blue, solid) and MH (red, dashed).

0 20 40 60
1

1.2

1.4

1.6

mean τ−1

0 20 40 60
0

0.2

0.4

var τ−1

0 20 40 60

6

8

·10−2 mean κ

0 20 40 60

0.5

1

1.5

2

·10−3 var κ

0 20 40 60
0.3

0.4

0.5

0.6

0.7

mean ψ1

0 20 40 60
0

5 · 10−2

0.1

var ψ1

0 20 40 60
0.3

0.4

0.5

0.6

Elapsed time (minutes)

mean ψ2

0 20 40 60

2

4

6

·10−2

Elapsed time (minutes)

var ψ2

8

References

An, Sungbae, and Frank Schorfheide. 2007. “Bayesian Analysis of DSGE

Models.” Econometric Reviews 26 (2-4): 113–72. https://doi.org/10.1080/

07474930701220071.

Anderson, Gary, and George Moore. 1985. “A Linear Algebraic Procedure for

Solving Linear Perfect Foresight Models.” Economics Letters 17 (3): 247–52.

https://EconPapers.repec.org/RePEc:eee:ecolet:v:17:y:1985:i:3:p:247-252.

Binder, Michael and Pesaran, M, (1997), Multivariate Linear Rational Ex-

pectations Models, Econometric Theory, 13, issue 6, p. 877-888.

Blanchard, Olivier Jean, and Charles M. Kahn. 1980. “The Solution of

Linear Difference Models Under Rational Expectations.” Econometrica 48

(5). [Wiley, Econometric Society]: 1305–11. http://www.jstor.org/stable/

1912186.

Chen, Tianqi, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. “MXNet:

A Flexible and Efficient Machine Learning Library for Heterogeneous Dis-

tributed Systems.”

Farkas, Mátyás and Tatar, Balint, 2020. “Bayesian estimation of DSGE

models with Hamiltonian Monte Carlo,” IMFS Working Paper Series 144,

Goethe University Frankfurt, Institute for Monetary and Financial Stability

(IMFS).

Ge, Hong, Kai Xu, and Zoubin Ghahramani. 2018. “Turing: A Language for

9

https://doi.org/10.1080/07474930701220071
https://doi.org/10.1080/07474930701220071
https://EconPapers.repec.org/RePEc:eee:ecolet:v:17:y:1985:i:3:p:247-252
http://www.jstor.org/stable/1912186
http://www.jstor.org/stable/1912186

Flexible Probabilistic Inference.” In International Conference on Artificial

Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca,

Lanzarote, Canary Islands, Spain, 1682–90. http://proceedings.mlr.press/

v84/ge18b.html.

Gelman, Andrew, and Donald B. Rubin. 1992. “Inference from Iterative

Simulation Using Multiple Sequences.” Statistical Science 7 (4). Institute of

Mathematical Statistics: 457–72. https://doi.org/10.1214/ss/1177011136.

Herbst, Edward, and Frank Schorfheide. 2016. Bayesian Estimation of Dsge

Models. 1st ed. Princeton University Press.

Hoffman, Matthew D., and Andrew Gelman. 2014. “The No-U-Turn Sampler:

Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.” Journal of

Machine Learning Research 15 (47): 1593–1623. http://jmlr.org/papers/

v15/hoffman14a.html.

Sims, Christopher A. 2002. “Solving Linear Rational Expectations Models.”

Computational Economics 20 (1-2): 1–20. https://ideas.repec.org/a/kap/

compec/v20y2002i1-2p1-20.html.

10

http://proceedings.mlr.press/v84/ge18b.html
http://proceedings.mlr.press/v84/ge18b.html
https://doi.org/10.1214/ss/1177011136
http://jmlr.org/papers/v15/hoffman14a.html
http://jmlr.org/papers/v15/hoffman14a.html
https://ideas.repec.org/a/kap/compec/v20y2002i1-2p1-20.html
https://ideas.repec.org/a/kap/compec/v20y2002i1-2p1-20.html

Appendix A

Proof of Proposition 1

The DSGE has both a stable and an unstable solution. We rely on both to

generate a set of necessary conditions for the solution of BK.

The stable solution is

x′ = [B11 −B12N]−1[A11 −A12N]︸ ︷︷ ︸
=C

x+ [B11 −B12N]−1[G1 −A12L]︸ ︷︷ ︸
=D

ε.

The unstable solution is

[B21 −B22N]x′ = [A21 −A22N]x+ [G2 −A22L]ε.

Substituting the stable into the unstable solution we get

[B21 −B22N]
(
[B11 −B12N]−1[A11 −A12N]x+ [B11 −B12N]−1[G1 −A12L]ε

)
= [A21 −A22N]x+ [G2 −A22L]ε

The equation above holds for all x, ε. Collecting terms in x, ε,

[B21 −B22N][B11 −B12N]−1[A11 −A12N] = [A21 −A22N] (1)

11

[B21 −B22N][B11 −B12N]−1[G1 −A12L] = [G2 −A22L] (2)

The deterministic part (Pullback for N)

Equation 1 only relies on the deterministic part of the model, and is expressed

solely in output matrix N . From (1), we derive the pushforward

∂[A21 −A22N]

= ∂[B21 −B22N][B11 −B12N]−1[A11 −A12N]

− [B21 −B22N][B11 −B12N]−1∂[B11 −B12N][B11 −B12N]−1[A11 −A12N]

+ [B21 −B22N][B11 −B12N]−1∂[A11 −A12N].

Let

β2 := B21 −B22N, β1 := B11 −B12N, α1 := A11 −A12N.

Rearranging the pushforward, we have

(B22 − β2β
−1
1 B12)ṄC + (β2β

−1
1 A12 −A22)Ṅ

= (˙B21 − ˙B22N)C − β2β
−1
1 (˙B11 − ˙B12N)C + β2β

−1
1 (˙A11 − ˙A12N)− (˙A21 − ˙A22N).

Without loss of generality, let x := vec(X). Vectorising, we have

12

Ξṅ = (C ′ ⊗ Iny)ḃ21 − ((NC)′ ⊗ Iny)ḃ22 − (C ′ ⊗ β2β
−1
1)ḃ11 + ((NC)′ ⊗ β2β

−1
1)ḃ12

+ (Inx ⊗ β2β
−1
1) ˙a11 − (N ′ ⊗ β2β

−1
1) ˙a12 − ˙a21 + (N ′ ⊗ Iny) ˙a22

(3)

where

Ξ = C ′ ⊗ (B22 − β2β
−1
1 B12) + Inx ⊗ (β2β

−1
1 A12 −A22).

Introduce dummy −z and take inner products w.r.t. both sides

〈−z,Ξṅ〉 = 〈−z, (C ′ ⊗ Iny)ḃ21〉 − 〈−z, ((NC)′ ⊗ Iny)ḃ22〉

− 〈−z, (C ′ ⊗ β2β
−1
1)ḃ11〉+ 〈−z, ((NC)′ ⊗ β2β

−1
1)ḃ12〉

+ 〈−z, (Inx ⊗ β2β
−1
1) ˙a11〉 − 〈−z, (N ′ ⊗ β2β

−1
1) ˙a12〉

− 〈−z, ˙a21〉+ 〈−z, (N ′ ⊗ Iny) ˙a22〉

Isolate ḃ, ȧ partials

〈−Ξ′z, ṅ〉 = 〈−(C ′ ⊗ Iny)′z, ḃ21〉+ 〈((NC)′ ⊗ Iny)′z, ḃ22〉

+ 〈(C ′ ⊗ β2β
−1
1)′z, ḃ11〉+ 〈−((NC)′ ⊗ β2β

−1
1)′z, ḃ12〉

+ 〈−(Inx ⊗ β2β
−1
1)′z, ˙a11〉+ 〈(N ′ ⊗ β2β

−1
1)′z, ˙a12〉

+ 〈z, ˙a21〉+ 〈−(N ′ ⊗ Iny)′z, ˙a22〉

Solve for the pullbacks

13

Ā21 = reshape(−Ξ′\n̄, ny, nx)

Ā22 = −Ā21N
′

Ā11 = −(β2β
−1
1)′Ā21

Ā12 = (β2β
−1
1)′Ā21N

′

B̄21 = −Ā21C
′

B̄22 = Ā21C
′N ′

B̄11 = (β2β
−1
1)′Ā21C

′

B̄12 = −(β2β
−1
1)′Ā21C

′N ′

To complete the derivation, follow the same steps for solution matrices

L,C,D and canonical form matrix G.

14

Appendix B

The Small Scale New Keynesian model of An and Schorfheide

(2007)

The small scale New Keynesian model used to compute the benchmarks

listed in this paper is expressed in full as follows:

yt = Et[yt+1]− 1
τ

(Rt − Et[πt+1]− Et[zt+1]) + gt − Et[gt+1]

πt = βEt[πt+1] + κ(yt − gt)

Rt = ρRRt−1 + (1− ρR)(1 + ψ1)πt + (1− ρR)ψ2(yt − gt) + σRεRt

zt = ρzzt−1 + σzεzt

gt = ρggt−1 + σgεgt

∆yt = yt − yt−1

where shock terms ε are i.i.d with mean zero and unit standard deviation.

The observable variables are ∆yt, Rt, πt, and observation errors are i.i.d with

standard deviation 0.01. The prior distributions used for benchmarking

exercises are as follows:

1/τ ∼ InverseGamma(8,8) κ ∼ Uniform(0.0,1.0)

ψ1 ∼ Gamma(4,1/8) ψ2 ∼ Gamma(4,1/8)

ρR ∼ Uniform(0.5,0.9) σR ∼ InverseGamma(4,0.32)

ρg ∼ Uniform(0.9,0.99) σg ∼ InverseGamma(4,2.0)

ρz ∼ Uniform(0.9,0.99) σz ∼ InverseGamma(4,0.5)

15

