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Introduction

The sucker has always tried to get something for nothing, and the ap-
peal in all booms is always frankly to the gambling instinct aroused by
cupidity and spurred by a pervasive prosperity. People who look for
easy money invariably pay for the privilege of proving conclusively that
it cannot be found on this sordid earth.
Jesse Livermore
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Stylised facts and major puzzles

Stylised Fact

We'll look at more data within each chapter, but there is really one
stylised fact that motivates the entire course.

Stylised Fact 1 Stocks typically earn higher returns to investors than bonds.

Puzzles

From this stylised fact, we can derive a series of research questions,
which we'll label as puzzles, because as a field we still haven't devel-
oped convincing and complete answers.

Puzzle 1 Why do stocks earn higher returns on average than bonds?

Puzzle 2 To what extent to market prices reflect all available information?

Puzzle 3 Which types of risks offer high returns and which types of risks
offer low returns?

Puzzle 4 What are the determinants of the choice between equity and debt
finance?

As we will see throughout the course, economists have made some
progress on these puzzles, but there is still much to learn. Doing well
in this course doesn't necessarily mean knowing the answers to these
questions. Instead, doing well means understanding what progress
has been made toward answers and understanding what types of
methodologies are used by researchers to progress our knowledge
and why. At times, this means that we'll spend a lot of effort studying
models that do not have a lot of predictive power!

Methodology and learning outcomes

This course requires you to write essays, to prove theorems, to apply
mathematical models by hand and with the help of a computer, and
to evaluate the efficacy of models both directly and by reviewing the
literature. This course is designed to improve your abilities in all of
these areas while learning the key introductory concepts in financial
economics and asset pricing.

Important takeaways from an education in financial economics

? survey investment managers and financial economics academics to
ask, in the wake of the Global Financial Crisis, what traits and skills
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What firms are seeking Academics' takeaways
Economic reasoning

Identify the effects of political
and environmental devel-
opments on an investment
portfolio.

Develop a deep understanding
of the relationship between
risk and return; be aware of the
assumptions behind models
and the limitations of modelts.

Models and data
Be able to combine rigorous
mathematical analysis with
sound economic thinking. Be
able to take in large quantities
of data, analyse this data and
exercise judgment.

Don't be afraid of the math. Be
aware that financial theories
and models are just heuristics.

Broad knowledge
Knowledge of history, political
economics, philosophy, science
and the arts provides tools to
critically analyse theories and
events.

Read broadly to develop your
curiosity; know your history.

Humility
Be able to admit mistakes and
revise opinions and decisions
in light of new Information.

Don't be shy to ask questions;
be hungry for knowledge;
continue to learn

Table 1: What firms are seeking and
what academics see as the important
takeaways
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finance students should focus on developing.1 A summary of their 1 Frank J. Fabozzi, Sergio M. Focardi,
and Caroline Jonas. Innvestment Man-
agement: A Science to Teach or an Art to
Learn? CFA Institute Research Founda-
tion, 2014. ISBN 978-1-934667-73-6

findings is produced in Table 1.
Most of the skills listed here are require application outside the

curriculum. What this module is designed to do is give you a set of
foundational tools and and insights, focusing on economic reasoning,
models and data that will support your learning outside and beyond
this module.

Computing with Julia

Julia is a new open source programming language designed specifi-
cally for scientific computing. The syntax of Julia will be reasonably
familiar if you have used other scientific computing languages such as
Stata, Matlab, R, Python and Gauss.

We'll use Julia in this course. Julia is reasonably straightforward
to use, it is quick, and it is becomming more popular in Financial
research as well as in industry. Julia is installed on the student-build
computers across the University, and can also be downloaded for free
from https://julialang.org/, where you will also find many
helpful resources to get you started.

Books

Primary text

The core textbook for this course is The Economics of Financial Markets,
by Roy Bailey2. Importantly, Bailey's textbook has a very different 2 Roy Bailey. The Economics of Financial

Markets. Cambridge University Press,
2005

style to these course notes, with much greater emphasis on prose ex-
planations of theory and in-depth literature reviews. With my notes
alone, you will miss out on a lot of helpful material contained in Bai-
ley's textbook.

Other helpful texts

Some of these books cost very little, especially for used copies of early
editions. These books will help you attain a greater understanding of
the course material, and a higher grade.

- Investments, by Bodie, Kane and Marcus.3 3 Zvi Bodie, Alex Kane, and Alan J.
Marcus. Investments. McGraw-Hill, 11
edition, 2017

Bodie, Kane and Marcus is probably the most popular textbook for
advanced undergraduate asset pricing courses. It covers most of
the ground that we cover in this course, and much more that we do
not cover. Early editions can be purchased very inexpensively from
amazon.co.uk or abebooks.co.uk.
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- The Econometrics of Financial Markets, by Campbell, Lo and MacKin-
lay.4 4 John Campbell, Andrew Lo, and

A. Craig MacKinlay. The Econometrics of
Financial Markets. Princeton University
Press, 1 edition, 1997

I have refered to Campbell, Lo and MacKinlay a lot when devel-
oping this course. The authors present clear expositions of econo-
metric theory as applied to financial markets as well as thoughtful
reviews of the empirical literature. If you are planning to write your
dissertation on a finance topic, or to continue to study finance at
MSc or PhD level, you should get this book.

- Financial Economics, by Fabozzi, Neave and Zhou.5 5 Frank J. Fabozzi, Edwin H. Neave, and
Guofu Zhou. Financial Economics. Wiley,
1 edition, 2012

This is another useful book that covers much of the same ground as
this course, with a nice style (in my opinion).

Popular non-fiction

The following books also discuss some of the central themes of this
course:

- Against the Gods: the remarkable story of risk, by Peter L. Bernstein.6 6 Peter L. Bernstein. Against the Gods: The
Remarkable Story of Risk. John Wiley &
Sons, 1998. ISBN 978-0471295631- A Random Walk Down Wall Street, by Burton G. Malkiel.7
7 Burton G. Malkiel. A Random Walk
Down Wall Street. W. W. Norton &
Company, 1973. ISBN 0-393-06245-7Roadmap

The course is divided into two distinct parts; the structure mostly
formed by considerations relating to the timing of assessment. The
first part of the course, weeks 1 to 4 prior to the test, is one topic per
lecture. The second part of the course, weeks 6 to 10 following the
test, form a more continuous narrative, developing concepts of market
efficiency and asset pricing models.

Part 1

Chapter 1 Overview of the course.
Some math revision.
Compound interest and discounting.

Chapter 2 Markets and instruments.
Debt or equity financing.
Private or public financing.

Chapter 3 Fixed income.
Duration and convexity.

Chapter 4 Arbitrage.
Forex and interest rate forwards.
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Chapter 5 Asset market efficiency.
The joint hypothesis problem.
Testing for efficiency and the role of asset pricing models.
Event studies.
Computer lab 1 is based on this Chapter.

Chapter 6 The fundamental valuation relationship.
Why do some assets offer higher returns than others?
Stocks vs. insurance.

Chapter 7 Mean variance utility.
What do we lose and gain when we take simple approximations?
Optimal portfolios.
Application: the welfare cost of business cycles.

Chapter 8 Efficient portfolios.
The gains from and limits to diversification.
Mutual fund separation theorems.

Chapter 9 The CAPM.
Can we explain the high returns of stocks?
Application: Network regulation.
Computer lab 2 is based on this Chapter.

Throughout the term, seminars will be used to cover more technical
material, and terminal classes will be used to apply the material to
real world data. The assessment pattern includes problem sets (15%),
coding exercises (15%) and a final exam (70%). The coding exercises
are based on lecture and seminar material, and contain questions
that are similar in style to the exam. The coding exercises assess the
terminal class work, build computational skills and add context to the
lecture and seminar material.



1
Principles of Valuation

What could be more interesting than interest rates?
It's right in the name!
Matt Levine, Money Stuff, 20 March 2017.
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Introduction and overview

This lecture starts by presenting an introduction to the main drivers
of the demand for financial assets: investors' beliefs about payoffs,
investors' preferences and opportunities for arbitrage. Following this
introduction, the lecture provides an overview of some useful statisti-
cal results, before an overview of discounting and arbitrage.

Figure 1.1 shows the relative performance of a usd$1 investment
in US shares, corporate bonds and money market instruments since
1979. Over this period, shares have outperformed corporate bonds
and money market intruments, albeit with significantly more risk.
At the start of this period, high inflation rates reduced the real net
returns to safe assets and corporate bonds below zero. The return
to safe money market instruments has also fallen negative in recent
years while the Federal Funds policy interest rate has been set at the
zero lower bound. The real returns to shares remained largely positive
throughout the period of high inflation at the start of the sample, and
despite crashes in 1987, 2000-02 and 2008-09 have delivered high
returns over long holding periods.

Figure 1.2 shows the log relative performance of investments in
shares and bonds versus safe assets for the past 30 years over a range
of holding periods. Over short holding periods, the returns to shares
have historically been much risker than for safer corporate bonds or
money market instruments (Fed Funds). Over longer holding periods,
shares have historically offered predictably higher returns than safer
assets.

The main question of this course is to ask where this historical
outperformance of shares relative to safer bond and money market
investments comes from. Does this historical outperformance reflect
past underestimates of returns to shares? If so, we wouldn't expect
these patterns to continue indefinitely. Alternatively, does this outper-
formance form compensation for shareholders for risk? If this latter
explanation is true, we should expect shares to continue to outperform
bonds over long horizons in future; we should be able to link historical
and expected relative performance of shares and bonds to measures of
risk and of risk tolerance.

The determination of asset prices

As in any market, asset prices are determined by demand and supply.
This course focuses largely on the demand side; what determines the
price agents will be willing to pay for a given asset? To a large extent,
the demand for financial assets is dependent on arbitrage, beliefs and
preferences.
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Figure 1.1: The long run performance of
shares, corporate bonds and safe assets.

Arbitrage

We can attempt to determine fundamental values of financial assets by
appeal to the beliefs and preferences of investors. Where an asset has
similar traded alternatives, we can also appeal to arbitrage arguments.

1. The Law of One Price.

The Law of One Price tells us that two assets (or portfolios) with the
same payoffs should trade at the same price. In finance, it can often
be difficult to construct an identical portfolio of traded assets that
replicates the payoffs of the individual asset we are trying to value.
But, we can generally get close to a replicating portfolio, and use the
price of the replicating porfolio as a starting point for valuation.

The Law of One Price is maintained by arbitrage, which are trading
strategies that require zero initial outlay, and are risk free. Limits to
arbitrage would exist when asset markets suffer from transactions
costs, and barriers to entry, and also when arbitrageurs cannot finance
their trades at the risk free interest rate.
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Figure 1.2: Excess returns to risky vs.
safe assets

Beliefs

Financial assets provide uncertain payoffs in future. Prices today
reflect beliefs held by individuals, which may or may not be consistent
with rational expectations. When determining their demand for an
asset, investors must form

2. beliefs over the expected payoffs of the asset and

3. beliefs over the risk profile associated with those payoffs.

We would expect assets with higher expected payoffs to have higher
prices all else equal. Would we expect assets with higher expected
variance to have lower prices all else equal?

Preferences

The second fundamental input into asset prices is the preferences of
investors. In particular, we are concerned with

4. investors' time preference and

5. investors' tolerance for risk.

All else equal, we should expect impatient investors to discount assets
with longer maturities. Would we expect risk tolerant investors to
have a greater demand for risky assets than risk averse investors?
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Discounting

Discounting allows us to compare the value of payments occurring
at different times. Typically, we would expect assets with returns
further in the future to trade at a lower price than assets with payoffs
nearer to the present, all else equal. When discounting, we are trying
to determine the present value at today's date of a payment occuring
in the future.

There are two key approaches two discounting, which form the
basis of the field of asset pricing. The first approach is arbitrage: assets
with similar payoffs should have similar prices. The second approach
combines preferences and beliefs: what is the expected consumption
value of the asset, and how does this compare to the opportunity cost
of the asset?

In the end, we want to use arbitrage arguments, beliefs and pref-
erences to derive discount factors or discount rates that can be used to
price assets.

Arbitrage

We start with arbitrage, thinking about discounting by appealing to
the law of one price: the present value of an asset is determined by the
cost of a portfolio that can be purchased today and that replicates the
payoffs of the asset. A replicating portfolio, if you will.

We start with an example.

Example 1.1 Suppose there is a bank account that offers an interest rate
of 25% for a 5 year deposit, risk free. 100 dollars deposit today returns 125
dollars in five years. What is the value of an asset that pays 100 dollars with
certainty in five years?

Solution 1.1 Well, if we deposit 80 pounds in the account today, the ac-
count will return us 100 (= 80 × (1 + 25%)) in five years' time. So, the
present value of an asset returning 100 dollars in five years is 80 dollars.

Typically, arbitrage based arguments have high predictive power.
Large divergences in prices of identical assets across markets do not
typically persist long, much to the annoyance of well-meaning pol-
icymakers.1 Unfortunately arbitrage arguments cannot always be 1 See for example this story

about Venezuelan offi-
cial exchange rate arbitrage:
http://www.reuters.com/article/us-
venezuela-flights/
get-a-boat-venezuela-flights-

booked-full-for-months-
idUSBRE98N0TW20130924

applied. Sometimes it is not possible to construct a perfect replicating
portfolio.

Basis risk

Basis risk is the difference between the payoffs of an asset and the
payoffs of the replicating portfolio constructed to match that asset.
Figure 1.3 provides an example of the type of thing that can go wrong.
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Figure 1.3 plots the recent price history of short term light sweet
crude oil futures for delivery at Cushing, Oklahoma (West Texas In-
termediate) and at London (Brent). The grading standards in terms
of purity, sulphur content for the two contracts is very similar, so any
differences in price when they exist are normally just the reflection of
shipping costs, plus some timing issues (the prices are end-of-day, but
the futures are traded in different time zones for example).

In 2011 the price of oil in Cushing Oklahoma started to fall be-
low the price in London, quite dramatically. This is largely due to
increased shale oil production in the US, which had odd laws prevent-
ing the export of oil at the time. When the US was an oil importer, the
price at Cushing reflected the world price. As US oil imports fell, the
Cushing price fell below the world price.

The West Texas Intermediate and London Brent futures markets
provide opportunities for oil producers and consumers to hedge the
cost of their consumption, and to construct replicating portfolios of
their economic exposure to fluctuations in oil prices. Any oil con-
sumer outside of the US who had hedged their oil cost with West
Texas Intermediate futures would have found in 2011 that the value of
their hedge had fallen below the cost of their underlying exposure.
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Figure 1.3: Light sweet crude in Cushing
and in London.
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Counterparty risk

Counterparty risk is credit risk inherent in the replicating portfolio. Ear-
lier we considered an example of a bank account offering 25% interest
over a five year term. If the bank offering this account defaults, then
the replicating portfolio will fail to replicate the 100 dollar payoff of
the asset.

Liquidity risk

Some arbitrage strategies require the trader to borrow in order to fund
their purchases of assets. This exposes the trader to liquidity risk: if
their funding is withdrawn while their trade is still active, they may
need to unwind their trade at cost.

Compounding

Compounding is the process of solving for the future value of an asset
given the present value and an interest rate (or a process of interest
rates over time). We can apply the reverse set of operations to discount
the value of future payments and determine the present value of
riskless assets.

In this Chapter, we'll quickly look at compounding, before return-
ing to discounting in Chapter 3. We start with an example.

Example 1.2 Consider two bonds B1 and B2, where both bonds pay coupon
payments of 6% per annum, but B1 makes payments annually, while B2

makes payments semi-annually (that is, bond B2 makes payments of 3%
every six months). Which bond would you prefer to hold?

Solution 1.2 Typically, you would prefer to hold bond B2. Bond B2 makes
more frequent payments, and you can reinvest the proceeds to obtain a greater
annual return than bond B1.

In sum, the frequency of payments matters, not just the interest
rate. In the above example, the two bonds B1 and B2 share the simple
rate of interest of 6%. But, the two bonds have different effective annual
interest rates, as B2 returns funds at higher frequency than B1.

Example 1.3 Consider an account yielding 6% p.a., compounding semi-
annually. This means that the bond pays 3%, each six months. The initial
deposit in the account is denoted A0. What is the amount in the account after
one year, A(1)?

Solution 1.3 After six months:

A(0.5) = A0 (1 + 3%)
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After one year:

A(1) = A(0.5) (1 + 3%)

= A0 (1 + 3%)2

A(1) = A0(1.0609)

The effective annual interest rate is 6.09%.

Property 1.1 The general formula for the effective annual interest rate R of a
periodic compounding asset with simple interest rate r, payment frequency of
n payments per year is

R =
(

1 +
r
n

)n

Property 1.2 After t periods, the value of an account with initial balance A0

with simple rate r, periodicity n is

A(t) = A0

(
1 +

r
n

)tn

Continuous compounding

When analysing bonds and loans, it makes sense to refer to simple and
effective interest rates consistent with the periodic compounding writ-
ten in the contract. But with other assets, including stocks, returns are
not as periodic, but are rather a continuous process. This continuous
force of interest can be considered by taking the limit of periodic com-
pounding as the compounding period becomes infinitessimally small.
This is referred to as continuous compounding.

What happens as n → ∞?

Proposition 1.1 Under continuous compounding (n → ∞)

A(t) = A0ert.

Proof. To prove this result, we need to show that

lim
n→∞

(
1 +

r
n

)tn
= ert.

There are a couple of ways to show this, which are beyond the scope
of this course but are useful exercises for students with stronger calcu-
lus backgrounds.

Arbitrage examples

Example 1.4 Consider the following foreign exchange rates taken from
Yahoo! Finance on 12 August 2016.

gbp/jpy = 132.26
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Read as ``gbp 1 is worth jpy 132.26''. This notation is standard but is also
an endless source of frustration. Note that to convert gbp 100 into jpy, you
would calculate the following: 100 gbp × gbp/jpy = 13226 jpy. Physicists
(rightfully) despair.

gbp/usd = 1.2966

usd/jpy = 102.03

Is there an arbitrage opportunity available at these prices?

Solution 1.4 Starting with usd 1, purchase 1 × usd/jpy = jpy 102.03. Sell
this for jpy 102.03/[gbp/jpy] = 102.03/132.26 = gbp 0.7714. This can be
sold for gbp 0.7714 × gbp/usd = 0.7714 × 1.2966 = usd 1.0002 . This
strategy appears to provide a small riskless profit, although this could be a
rounding error or the result of relying on mid-prices, which don't necessarily
reflect the bid/offer prices available to individual investors.

Example 1.5 Consider the following interest rates taken from Bloomberg.com
on 12 August 2016. Municipal bonds are issued by US local and state gov-
ernments. They are generally considered to have very low probability of
default, but not as low as US Government bonds issued by the US Federal
Government.

USD Govt Bond 12M Yield = 0.53%

USD Municipal Bonds 12M Yield = 0.45%

Why do US municipal bonds offer lower yields than US Government
bonds?

Solution 1.5 The limit to arbitrage in this example is the tax treatment of
these two instruments. In the US, retail investors' income from Municipal
Bonds is tax-exempt. This lifts the retail demand for Municipal Bonds above
that of Federal Government Bonds for retail customers. Note that institu-
tional and foreign investors do not enjoy this differential tax treatment.

Beliefs and expectations

We model beliefs about payoffs and risk using the expectation operator.
Behind the scenes, we'll be considering expectations formed with
respect to a given information set, that is, E(·|Ωs), where Ωs is the
information set, or beliefs, of some investor s. To keep the notation
simple, we'll typically just refer E(·) whenever this is unlikely to cause
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confusion. The rest of this section is a review of mathematical results
that we will rely on in future chapters.

Let Y be a discrete random variable.

State 1 2 3 ... n
Realisation y1 y2 y3 ... yn

Probability π1 π2 π3 ... πn

The expectation of Y is

E(Y) =
n

∑
i=1

πiyi

Notation: Sometimes we'll use the notation µY = E(Y).

Example 1.6 What is the expected payoff of the following random variable,
Y?

State 1 2 3 4
Realisation −10 0 6 14
Probability 0.4 0.1 0.3 0.2

Solution 1.6 To solve for the expectation, we sum over the products of
realisations and probabilities associated with each state:

E(Y) =
n

∑
i=1

πiyi

= π1y1 + π2y2 + π3y3 + π4y4

= 0.4 × (−10) + 0.1 × 0 + 0.3 × 6 + 0.2 × 14

= −4 + 0 + 1.8 + 2.8

= 0.6

The expectation of a function of a random variable

Property 1.3 The expectation operator is a linear operator,

E(a + bZ) = a + b · E(Z)

Example 1.7 Rate of return:

rY =
Y − PY

PY
=

Y
PY

− 1

What is the expectation of rY?

Solution 1.7

E(rY) = E

(
Y − PY

PY

)
E(rY) =

E(Y)
PY

− 1
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Example 1.8 Asset PY = 80, y1 = 120, y2 = 60, π1 = π2 = 0.5. What is
the expected return E(rY)?

Solution 1.8

E(rY) =
E(Y)

PY
− 1

=
0.5 × 120 + 0.5 × 60

80
− 1

=
90
80

− 1

= 12.5%

The variance of a random variable

Alongside measures of expected payoffs, we also need to account
for investors expectations of risk. The variance operator is a useful
starting point.

Definition 1.1 The variance of random variable Y is

var(Y) = E[(Y − E[Y])2]

=
n

∑
i=1

πi(yi − µY)
2

Notation: Sometimes we'll use the notation σ2
Y = var(Y).

Example 1.9 Consider the variable Y from Example 1.6, what is the vari-
ance of Y?

Solution 1.9

var(Y) = E[(Y − E[Y])2]

=
n

∑
i=1

πi(yi − µY)
2

= 0.4 × (−10 − 0.6)2 + 0.1 × (0 − 0.6)2 + 0.3 × (6 − 0.6)2 + 0.2 × (14 − 0.6)2

= 0.4 × 112.36 + 0.1 × 0.36 + 0.3 × 29.16 + 0.2 × 179.56

= 44.944 + 0.036 + 8.748 + 35.912

= 89.64

Property 1.4 The variance of random variable Y can be expressed as follows:

var(Y) = E[Y2]− (E[Y])2

Proof. Start from the definition of
variance,

var(Y) = E[(Y − E[Y])2]

= E[Y2 − 2YE(Y) + E(Y)2]

= E[Y2]− 2E(Y)E(Y) + E(Y)2

= E[Y2]− (E[Y])2

Example 1.10 Again, consider the variable Y from Example 1.6, calculate
the variance of Y using Property 1.4.
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Solution 1.10

var(Y) = E[Y2]− (E[Y])2

=

(
n

∑
i=1

πiy2
i

)
− µ2

Y

= (0.4 × (−10)2 + 0.1 × 02 + 0.3 × 62 + 0.2 × 142)− 0.62

= 0.4 × 100 + 0.1 × 0 + 0.3 × 36 + 0.2 × 196 − 0.36

= 40 + 0 + 10.8 + 39.2 − 0.36

= 89.64

It is up to you whether you choose to use Property 1.4 when calculat-
ing variances in this course, many students find it easier to do so.
Hint: The variance of a random variable must always be non-negative. If
you do get a negative value, it is possible that you've got the order wrong,
calculating (E[Y])2 − E[Y2] instead of E[Y2]− (E[Y])2.

Variance of a function

Property 1.5 Variance of a function: The general rule for the variance of
linear functions of a single random variable is as follows,

var(a + bZ) = b2 var(Y)

Proof. Start from the definition of
variance given in Definition 1.1.

var(a + bY) = E[((a + bY)− E[a + bY])2]

= E[(a + bY − a − b · E[Y])2]

= E[(bY − b · E[Y])2]

= b2 · E[(Y − E[Y])2]

= b2 var(Y).

Example 1.11 The variance of returns. The rate of return for asset Y is
given by

rY =
Y
PY

− 1.

What is the variance of rY?

Solution 1.11 Using Property 1.5, in this case with b =
1

PY
. Therefore we

have

var(rY) =
var(Y)

P2
Y

.

Two random variables

Throughout this course we will often consider cases with two or many
random variables. These could be different assets in our portfolio, or
alternatively a combination of state-contingent payoffs and marginal
utilities. Let πij = P(X = xi, Y = yj).
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Value of Y
y1 y2 y3 ... yn P(X)

Value of X

x1 π11 π12 π13 · · · π1n P(x1)

x2 π21 π22 π23 · · · π2n P(x2)

x3 π31 π32 π33 · · · π3n P(x3)
...

...
...

...
. . .

...
...

xm πm1 πm2 πm3 · · · πmn P(xm)

P(Y) P(y1) P(y2) P(y3) · · · P(yn)

The final row displays the marginal distribution of Y, the final
column displays the marginal distribution of X.

Definition 1.2 The marginal probability of X = xi is the unconditional
probability of the event X = xi occurring, P(X = xi).

Definition 1.3 The joint probability of the doublet (X = xi, Y = yj) is
the unconditional probability of both events X = xi and Y = yj occurring,
P(X = xi, Y = yj).

Definition 1.4 The conditional probability of the ordered pair (X = xi, Y =

yj) is the probability of event X = xi occurring given the known occurrence
of Y = yi, P(X = xi|Y = yj).

Example 1.12 Let there be two discrete random variables, X and Y, de-
scribed as follows

Value of Y
−4 0 8

Value of X
3 0.0 0.1 0.4
2 0.2 0.3 0.0

Find, solve for the following:

a. The marginal probability, P(X = 3)

b. The joint probability of the doublet, P(X = 3, Y = 8).

c. The conditional probability, P(X = 3|Y = 8).

Solution 1.12 a. The marginal probability, P(X = 3) = 0.5

b. The joint probability of the doublet, P(X = 3, Y = 8) = 0.4.

c. The conditional probability, P(X = 3|Y = 8) = 1.
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We can sum across rows and columns to find the marginal distribu-
tions of X and Y.

Value of Y
−4 0 8 P(X)

Value of X
3 0.0 0.1 0.4 0.5
2 0.2 0.3 0.0 0.5

P(Y) 0.2 0.4 0.4

Covariance and correlation

Definition 1.5 The covariance of X and Y,

cov(X, Y) = E[(X − E(X))(Y − E(Y))]

Notation: σXY := cov(X, Y).

Property 1.6

cov(X, Y) = E(XY)− E(X) · E(Y)

Proof. Start from the definition of covariance:

cov(X, Y) = E[(X − E(X))(Y − E(Y))]

= E[XY − XE(Y)− E(X)Y + E(X)E(Y)]

= E(XY)− E(X)E(Y)− E(X)E(Y) + E(X)E(Y)

= E(XY)− E(X) · E(Y)

Property 1.6 will be very useful in a range of situations. Primarily,
terms of the form E(XY) often emerge in financial economics, and it
is useful to be able to decompose these terms into cov(X, Y) + E(X) ·
E(Y).

Example 1.13 Back to our example:

Value of Y
−4 0 8 P(X)

Value of X
3 0.0 0.1 0.4 0.5
2 0.2 0.3 0.0 0.5

P(Y) 0.2 0.4 0.4

What is the covariance of X and Y?
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Solution 1.13
E(X) = 0.5 × 3 + 0.5 × 2 = 2.5

E(Y) = 0.2 × (−4) + 0.4 × 0 + 0.4 × 8 = 2.4

E(XY) = 0.0 × 3 × (−4) + 0.1 × 3 × 0 + 0.4 × 3 × 8

+ 0.2 × 2 × (−4) + 0.3 × 2 × 0 + 0.0 × 2 × 8

= 8

cov(X, Y) = E(XY)− E(X) · E(Y)

= 8 − 2.5 × 2.4

= 2

Property 1.7 The covariance of a random variable Y with itself is equal to
the variance of Y,

cov(Y, Y) = var(Y)

Property 1.8 The covariance operator is commutative,

cov(X, Y) = cov(Y, X)

Definition 1.6 Correlation,

corr(X, Y) =
σXY

σXσY

Sometimes, we'll use the notation ρXY := corr(X, Y).
Note that correlation is a normalised measure, ρXY ∈ [−1, 1], ∀ X, Y.

Functions of two random variables

Suppose X and Y are payoffs from two investments. W represents the
payoff from a portfolio which holds both investments X and Y. The
parameters a and b are the amounts invested in investments X and Y
respectively.

W = aX + bY

Property 1.9 The expectation of a linear function of two random variables:

E(W) = E(aX + bY)

= aE(X) + bE(Y)

Property 1.10 The variance of a linear function of two random variables:

var(aX + bY) = a2var(X) + b2var(Y) + 2ab · cov(X, Y)
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Proof. Start with the definition of variance,

var(aX + bY) = E[(aX + bY)− E(aX + bY)]2

= E[a(X − E(X)) + b(Y − E(Y))]2

= E[a2(X − E(X))2 + b2(Y − E(Y))2 + 2ab(X − E(X))(Y − E(Y))]

= a2E(X − E(X))2 + b2E(Y − E(Y))2 + 2ab · E[(X − E(X))(Y − E(Y))]

= a2var(X) + b2var(Y) + 2ab · cov(X, Y)

Property 1.10 helps us determine the benefits of diversification.
Example 1.14 shows how this works in practise with a simple two
asset example.

Example 1.14 Let W be a portfolio of financial assets X and Y, with respec-
tive weights a = 0.5 and b = 0.5,

W = 0.5X + 0.5Y

What is the variance of W when var(X) = var(Y) and

(a) corr(XY) = 1,

(b) corr(XY) = 0.5,

(c) corr(XY) = 0,

(d) corr(XY) = −1?

Solution 1.14 (a)

var(W) = a2var(X) + b2var(Y) + 2ab · cov(X, Y)

= a2var(X) + b2var(Y) + 2ab · corr(X, Y)σXσY

= (0.5)2var(X) + (0.5)2var(Y) + 2(0.5)(0.5)(1)σXσY

= (0.5)2σ2
X + (0.5)2σ2

X + 2(0.5)(0.5)σ2
X

= [(0.5)2 + (0.5)2 + 2(0.5)(0.5)]σ2
X

= σ2
X

(b)

var(W) = (0.5)2var(X) + (0.5)2var(Y) + 2(0.5)(0.5)(0.5)σXσY

= [(0.5)2 + (0.5)2 + 2(0.5)(0.5)(0.5)]σ2
X

= 0.75σ2
X
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(c)

var(W) = (0.5)2var(X) + (0.5)2var(Y) + 2(0.5)(0.5)(0)σXσY

= [(0.5)2 + (0.5)2]σ2
X

= 0.5σ2
X

(d)

var(W) = (0.5)2var(X) + (0.5)2var(Y) + 2(0.5)(0.5)(−1)σXσY

= [(0.5)2 + (0.5)2 − 2(0.5)(0.5)]σ2
X

= 0

Example 1.14 shows how portfolios with more highly correlated
assets will have greater variance, all else equal.

Independence

Definition 1.7 Random variables X and Y are independent if and only if

P(X = xi, Y = yj) = P(X = xi)P(Y = yj) ∀ i, j

Notation: We write X ⊥ Y.

Property 1.11 Random variables X and Y are independent if and only if
the marginal probability of the event X = xi is equal to the conditional
probability of the event X = xi given the realisation of Y = yj,

X ⊥ Y iff P(xi) = P(xi|yj) ∀ i, j.

Property 1.12 If random variables X and Y are independent, it follows that
the covariance of X and Y is zero,

X ⊥ Y ⇒ cov(X, Y) = 0.

Summary and next steps

In Chapter 3, we'll return to discounting using fixed interest rates and
arbitrage principles. We'll study how the present value of an asset
responds to fluctuations in interest rates. In Chapter 4, we'll use the
principle of arbitrage to value forward contracts, a simple form of
derivative contract.

In the second half of the course, from Chapter 7 onwards, we'll
turn to situations where a replicating portfolio is difficult to construct,
and we need to rely on economic principles to discount future risky
payoffs.



32

Problems for Chapter 1

Exercise 1.1 Prove Property 1.3 for discrete random variables.

Exercise 1.2 a. Prove Property 1.7 and

b. Prove Property 1.8.

Exercise 1.3 Sam is an investor with gbp£1 to invest in a portfolio of assets
X and Y. Sam's portfolio W, can be represented by the following expression,
W = aX + (1 − a)Y, where a ∈ [0, 1].

a For given a, what is the variance of W?

b Find a∗ that minimises the variance of W. That is, find

a∗ = arg max
a∈[0,1]

var(W) = var(aX + (1 − a)Y)

c Show that when var(X) = var(Y), portfolio weight a∗ does not depend on
cov(X, Y).

d Under what conditions is (i) a∗ = 1, or (ii) a∗ = 0?

Exercise 1.4 Consider the random variables X and Y,

Value of Y
−1 0 1

Value of X
1 0.25 0.00 0.25

−1 0.00 0.50 0.00

Show that X and Y have zero covariance but are not independent.

Exercise 1.5 Consider the interest rate information in Figure 1.4, which
is taken from documentation provided by a well-known bank. Confirm that
the simple and effective interest rates quoted are consistent with monthly
compounding.
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Figure 1.4: Periodic compounding in
retail finance.





2
Markets and Instruments

I coulda bought a place in Dumbo before it was Dumbo
For like two million
That same building today is worth twenty-five million
Guess how I'm feelin'? Dumbo
...
I bought some artwork for one million
Two years later, that shit worth two million
Few years later, that shit worth eight million
I can't wait to give this shit to my children
Jay Z, The Story of O.J.
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Introduction and overview

This Chapter introduces the main capital markets and instruments
used by firms. Special attention is paid to the distinctions between
debt and equity instruments, as well as distinctions between interme-
diated and decentralised markets.

Capital Markets

We start with a brief overview of the main types of capital markets
we'll consider in this course. The first two categories, Equity and Debt
markets, will feature heavily throughout the course, and it is these
two capital markets that play the primary role of raising funds for
firm investment. Commodity and physical asset markets provide
opportunities to trade control rights over factors of production, while
foreign exchange (FOREX) and derivative markets predominantly
serve a risk management purpose (note that risk management does not
necessarily mean risk mitigation).

Equity markets

Equity or shares are ownership claims on the firm. Shareholders typi-
cally enjoy some control rights including the right to elect directors as
well as participate in some major decisions made by the firm. Share-
holders also have a right to residual income generated by the firm. As
this income is uncertain, the dividend income returned to sharehold-
ers and the value of shares themselves are volatile.

Equity markets take many forms. Internal markets for equity can
involve the issuing of shares to employees and other firm insiders,
as well as the allocation of shares between different firms within a
conglomerate. External markets for equity also take numerous forms.
Private markets for equity are characterised by long term relationships
between individual shareholders and management. Examples include
the angel investment popularised by television shows Dragon's Den
and Shark Tank, and also the ownership of most football clubs. Private
equity financing is popular at the early stage of firms. Historically, pri-
vately placed equity issuance it was limited to small scale fundraising,
but more recently it is also used for larger scale fundraising. Uber, for
example, has raised usd$8.7 billion in private equity fundraising.1. 1 https://www.crunch-

base.com/organization/u-
ber#/entity

Traditionally, firms have turned to public markets for large-scale eq-
uity fundraising. Public markets offer liquidity for shareholders; it is
easier to buy and sell holdings publicly traded shares than holdings
of privately placed shares. While publicly traded stocks dominate the
news and media discussions of the strength of economies, much of the

https://www.crunchbase.com/organization/uber#/entity
https://www.crunchbase.com/organization/uber#/entity
https://www.crunchbase.com/organization/uber#/entity
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equity of firms in most economies is privately placed. 2.1 gives some
indication of the relative values of the total markets for private and
public equity holdings in the United States.
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Source: Federal Reserve Board Z1 tables
(Series identifiers: Z1/Z1/FL152090205.Q, Z1/Z1/FL153064105.Q)

Figure 2.1: Holdings of noncorporate
and corporate equity

Debt markets

Debt contracts confer the holder the right to a fixed stream of pay-
ments; typically this means a periodic stream of coupons plus a large
terminal payment, the principal. Similar to equity, there are private
and public markets for debt. Bonds are typically issued in public mar-
kets and are tradeable between decentralised bondholders. Private
markets for debt include but are not restricted to bank lending mar-
kets.

Derivative markets

A derivative is a contract that commits parties to payments and actions
contingent on verifiable events. A derivative is said to derive value
from the values of other assets. It is perhaps easiest to consider some
examples of derivatives.

A forward contract commits one party to pay/receive the difference
between a market price and a pre-determined strike price at some
given future date. For example, Apple might estimate that they will
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sell gbp £10 billion worth of products in the UK next year. In order
to mitigate currency risk arising from fluctuations between usd and
gbp, Apple might wish to sell forward gbp £10 billion in dollars. This
contract would commit Apple to pay the difference between the future
gbp/usd exchange rate and the contracted strike exchange rate, if the
difference is positive (that is, if gbp appreciates). If negative, Apple
would receive the difference from the counterparty.

A swap agreement is a bundle of forward contracts. For example,
an interest rate swap might commit Alex to pay Bernie the difference
between a variable floating interest rate and a pre-determined fixed
interest rate when the floating interest rate exceeds the fixed interest
rate. When the fixed rate exceeds the floating rate, Bernie would pay
Alex the difference. This type of swap contract can be helpful if Bernie
had an outstanding bank loan with variable interest payments. The
swap, with third party Alex, would protect Bernie from the risk of
interest rate increases.

One problem with a forward contract is that they can create large
counterparty exposures; large movements in the price of the under-
lying security require large settlement payments on the termination
date. These large settlement payments may be unaffordable to the
payer, introducing counterparty risk. This counterparty risk may be
manageable when the counterparties are familiar to each other. How-
ever, this counterparty risk does prevent trade between decentralised,
unfamiliar counterparties. A futures contract is an exchange traded
product that demands continuous maintenance of margin held with a
centralised clearing house, largely eliminating counterparty risk. Due
to the exchange traded nature of futures contracts and lack of counter-
party risk, it is not necessary to match individual buyers and sellers,
but rather just to match aggregate demand and supply.

A European call option has three inputs. First, an underlying asset
is specified (as an example, let's say Apple shares: AAPL). Second,
a strike price is specified (say usd$200). Third, a termination date is
specified (say 16:00 EST, 31 December 2016). The call option gives
the purchaser the right to buy the underlying at the strike price at
the termination date. In this example, the purchaser would have the
right to buy an Apple share from the seller for $200 at 16:00 EST, 31
December 2016. At the time of writing (20 September 2016) Apple
shares are currently trading at usd$113.58. How much would you pay
for this option?

Equity and Debt

Debtholders have a senior claim on the firms assets, above that of
shareholders. This means that if a firm defaults on their debts, the
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debtholders have the right to take control of the firm from the share-
holders. Figure 2.2 presents a payoff diagram for equity and debt.
When the asset value of the firm is below the value of the firm's debts,
the equity is worth nothing and the total value of the debt is equal to
the value of the firm's assets. When the asset value of the firm exceeds
the value of the firm's debst, the value of the firm's equity is the differ-
ence between the value of the firm's assets and the value of the firm's
debts.

Firm asset value

Claim value
PE

PBB

B
0

0

Figure 2.2: Firm asset value and investor
payoffs

Why do firms sell equity?

It is useful to stop and ask why there are markets for these instru-
ments in the first place. Why would a firm sell equity and how do
they decide between issuance of equity and debt?

Elliot is an entrepreneur with initial wealth we and Sam is a saver
with initial wealth ws. Both Elliot and Sam are risk averse, sharing
common utility function u(c) where u′,−u′′ > 0. Elliot has access to
an investment project returning y = z · r(a), where a is the amount
invested in the project, z is a random variable, z = zi with probability
πi, r(a) is concave, r, r′,−r′′ > 0. All remaining wealth earns gross
return 1.

Efficient allocations

What we want is to determine what are the features of an optimal
finance contract between Sam and Elliot. An external finance contract
is considered optimal if the equilibrium outcomes under the contract
are superior in expectation to the equilibrium outcomes under any
other contract.

We take an approach called mechanism design. 2 provides a nice 2 Nobuhiro Kiyotaki. A Mechanism
Design Approach to Financial Frictions,
pages 177--187. Palgrave Macmillan UK,
London, 2012. ISBN 978-1-137-03425-0

introduction to this approach to the study of financial markets with
closely related examples.3 What we'll do is solve for the consump-

3 I also have some research that uses this
method .

Alfred Duncan. Private information
and business cycle risk sharing. Work-
ing Papers 2016-02, Business School
- Economics, University of Glasgow,
January 2016
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tion allocations and actions that maximise a weighted average of the
expected utilities of the two agents. Sometimes, this is referred to as
the social planner's problem. The planner weights (or Pareto weights) ap-
plied to the utility of each agent can represent market power or initial
wealth or other considerations.

We can solve the planner's problem with Pareto weights µe, µs:

max
ce

i ,cs
i ,a

E[µeu(ce
i ) + µsu(cs

i )]

subject to the budget constraints

zi · r(a) + (we + ws − a) ≥ ce
i + ca

i ∀ i.

The first term on the left hand side, zi · r(a), is the (stochastic) return
to Elliot's investment project. The second term, we + ws − a, is the
remaining wealth of Elliot and Sam that has not been allocated to the
project. The right hand side, ce

i + ca
i , is the sum of the consumption of

Elliot and Sam. The notation ∀ i means for all states i.
We solve this problem using the Lagrangian method. The La-

grangian for this problem can be expressed as follows:

L = E[µeu(ce
i ) + µsu(cs

i ) + λi(zi · r(a) + (we + ws − a)− ce
i − ca

i )]

At an optimum, the derivatives of the Lagrangian L with respect to
the choice variables cj

i , a and the Lagrange multipliers λi are all equal
to zero. These conditions are referred to as the first order necessary
conditions of the Lagrangian.

In this example, the first order necessary conditions are

∂L
∂cj

i

: 0 = πi[µ
ju′(cj

i)− λi], (2.1)

∂L
∂a

: 0 = E[λi(zi · r′(a)− 1)]. (2.2)

For our purposes, the important condition is 2.1, which we can re-
write as:

µeu′(ce
i ) = µsu′(cs

i ) ∀ i

u′(ce
i )

u′(ce
j )

=
u′(cs

i )

u′(cs
j )

∀ i, j (2.3)

Equation 2.3 tells us that Elliot and Sam share the risk of production.
The left (right) hand side of 2.3 is Elliot's (Sam's) marginal rate of
substitution from consumption in state j to consumption in state i.

You may be unfamiliar with thinking about marginal rates of sub-
stitutions between consumption in two different states of the world,
but they work the same way as standard marginal rates of substitution



41

in other areas in economics. The marginal rate of substitution
u′(ce

i )

u′(ce
j )

is the amount of consumption in state j that Elliot would give up to
increase their consumption in state i by one unit.

We can go somewhat further by imposing restrictions on the prefer-

ences of Elliot and Sam. Let u(c) =
c1−γ

1 − γ
, then

ce
i

ce
j
=

cs
i

cs
j

∀ i, j. (2.4)

Equation 2.4 states that the consumption allocations of Elliot and
Sam move together. When Elliot has high consumption, Sam has high
consumption. The optimal contract is therefore a risk sharing contract,
where Sam as the outside investor enjoys higher consumption when
the payoff from the investment is high. In other words, the optimal
contract involves Sam holding shares in the project.

Lesson: Shares help entrepreneurs and savers share the investment
and production risks.

Why do firms sell debt?

If equity helps firms and savers effectively share productive risk, then
why would firms issue debt contracts? Debt contracts commit firms to
constant repayments, regardless of income. This concentrates produc-
tive risk with borrowers.

Starting from the same model, let's assume that the state i is re-
vealed to Elliot only. If the true revenue is yi, Elliot can declare rev-
enue yk, and hide the difference yi − yk. We can solve this problem
by appealing to the revelation principle, a powerful tool for the study of
economic problems involving information asymmetries.

The revelation principle: Any optimal allocation can be achieved
through a direct mechanism that encourages truthful reporting by
all agents.

Applying the revelation principle, we impose the restraint on con-
tractual arrangements that borrowers must have an incentive to accu-
rately report their income in all states of the world. This truth-telling
constraint is:

ce
k + yi − yk ≤ ce

i ∀ i, k

The only way to satisfy this truth-telling constraint is to ensure that

ce
k − ce

i = yk − yi ∀ i, k
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Elliot retains all productive risk. If Sam contributes to the funding of
the project, it must be through a `debt' contract with a fixed repay-
ment.

Sometimes, this property of debt is referred to as information insensi-
tivity. The borrower Elliot cannot exploit their information advantages
over Sam; repayments are not contingent on reported income.

Lesson: Debt helps entrepreneurs and savers manage moral hazard.

Markets, intermediaries and conglomerates

The previous section considered the firm's choice between issuing
debt and issuing equity. But as we saw earlier, each of these types
of instruments can be issued in more centralised, private markets
or more decentralised, public markets. What determines the choice
between issuing publicly tradable liabilities or non-tradable liabilities?

Type of Market
Public Markets Intermediaries Internal Financing

Instruments and Risk Sharing Characteristics
Equity Public Equity Private Equity

Conglomerates
Debt Bonds Bank lending

Further Characteristics
Decentralised −→ Centralised

Less monitoring −→ More monitoring
Less flexibility −→ More flexibility
More liquidity −→ Less liquidity

Table 2.1: Financial arrangements,
markets and characteristics

Table 2.1 presents a break down of some of the characteristics of
different financing arrangements. Publicly traded liabilities have more
decentralised ownership. This increases liquidity of these instruments,
which can increase demand from investors. On the other hand, hav-
ing a more dispersed, decentralised set of shareholders and creditors
can make it difficult to develop relationships between the firm and
its shareholders and creditors. This might make it difficult for share-
holders and creditors to monitor firm management and ensure that
the firm is being run effectively. In addition, it may make it difficult to
renegotiate the terms of these contracts in the event that the firm's in-
come deteriorates. More centralised, private and internal placements
of equity and debt help foster long term relationships between the
firm and its investors. This helps encourage effective monitoring, and
allows for the opportunity of renegotiation when appropriate.



43

Leverage patterns by industry

Plot 2.3 presents the relationship between firm assets and leverage for
Financial and Energy sector firms in the S&P 500. On average, finan-
cial sector firms have higher leverage than energy sector firms---this
should be unsurprising. Somewhat more interesting is the difference
in the relationship between firm size and leverage across the two sec-
tors. Energy sector firms appear to fund expansion with proportionate
increases in equity and debt; energy sector leverage is approximately
invariant to firm size. Financial sector firms appear to fund expansion
with a disproportionate reliance on debt finance relative to equity
finance.

(S&P 500 firms. Latest data available as of September 2017.)
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Figure 2.3: Assets and Leverage in the
Financial and Energy Sectors

Stock markets around the world

Table 2.2 presents stock market capitalisation to GDP measures for a
selection of countries. What is perhaps surprising is the wide varia-
tion in stock market capitalisation across seemingly similar countries.
What are the determinants of market capitalisation across countries?

Legal systems Well functioning public stock markets require strong le-
gal systems that can bring together decentralised investors in dispute
with firms. In the context of the United States, the Delaware Court of
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Chancery leads the world in the settlement of corporate disputes, a
fact that is often credited for the size of public stock markets in the US.
However, while the UK's strong legal institutions may be one factor in
determining the fact that the UK has larger stock markets than Italy,
but it doesn't really help us when we compare the UK with South
Africa, or Honduras.

Income As a country grows in income, savings increase and the
capital stock increases. This investment requires the mobilisation of
savings, perhaps through stock markets. But the data suggest that
there are not necessarily strong links between income and stock mar-
ket capitalisation. There are rich countries with small stock markets
(Italy) and low income countries with large stock markets (India,
South Africa).

Taxes We might expect that in countries with lower corporate tax
rates, there would be greater use of equity finance and consequently
greater public stock markets relative to GDP. Across European coun-
tries, this seems to have some explanatory power. Switzerland for
example has low corporate income tax rates and high stock market
capitalisation. But other low corporate tax countries including the
Cayman Islands and Bermuda don't follow this trend.

Gateways Three countries that jump out of this data are Hong Kong,
Switzerland and South Africa. These countries' stock markets appear
to provide gateways for international investors into a wider set of
countries. For example, firms from China issue shares in Hong Kong,
which can be bought by international investors.

Case study: home loans or home shares?

Most home purchases are funded through debt contracts called mort-
gages. These mortgages leave the homeowner exposed to fluctuations
in the value of the property, some of which are out of their control. Re-
cessions, natural disasters and changes in school zones affect property
values and can result in large fluctuations in the wealth of the home-
owner. In the wake of the global financial crisis, falls in housing worth
relative to mortgage liabilities reduced household spending, increas-
ing the severity of the recession 4. Equity contracts, as an alternative 4 Atif Mian and Amir Sufi. Household

leverage and the recession of 2007-09.
IMF Economic Review, 58(1):74--117, 2010

to mortgages, would share these risks between the homeowner and
the more lender, potentially increasing welfare.
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(Source: World Bank, latest available as at August 2016)
Stock Market GDP

Country Capitalisation per capita GDP
(% of GDP) (USD) (USD b)

Asia and the Pacific
Australia 89 56 328 1 340
China 75 7 925 10 866
Hong Kong 1 028 42 423 310
India 73 1 582 2 074
Japan 119 32 477 4 123
Malaysia 129 9 766 296
Singapore 219 52 889 293

Europe
Channel Islands 15 73 568 12
France 86 36 248 2 422
Germany 51 41 219 3 356
Italy 27 29 847 1 815
Luxembourg 82 101 450 58
Norway 50 74 735 388
Switzerland 229 80 215 665
United Kingdom 67 43 734 2 849

Latin America and the Caribbean
Barbados 105 15 661 4
Brazil 28 8 539 1 775
Cayman Islands 5 6 4105 3
Honduras 538 2 496 20

Middle East
Kuwait 105 28 985 113
Qatar 85 74 667 167

North America
Bermuda 26 85 748 6
Canada 103 43 249 1 551
United States 140 55 837 17 947

Africa
South Africa 235 5 692 313

Table 2.2: Stock market capitalisation for
selected countries

Shared responsibility loans

5 argue that it would be better if residential finance took the form of 5 Atif Mian and Amir Sufi. House of Debt.
University of Chicago Press, 1 edition,
2015

home shares, rather than home loans. Under their proposal, lenders
and borrowers would share any appreciation or depreciation in home
prices. Risk sharing real estate finance is rare but does exist in a range
of forms. In Canterbury, there are typically property listings that offer
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shared ownership to the purchaser---essentially the purchaser and
the seller each hold equity shares in the property.6 PartnerOwn is a 6 See https://www.rightmove.

co.uk/property-for-sale/
Canterbury/shared-ownership.
html.

startup offering shared responsibility loans in the US.7 PartnerOwn's

7 See http://partnerown.com/.
Shared Responsibility mortgages are linked to the value of local mar-
ket prices, with loan repayments falling if local market prices fall (?,
describes a similar model).

Source:
http://www.dailymail.co.uk/money/mortgageshome/article-3684914/
Barclays-charged-90-year-old-widow-177-750-repay-22-250-shared

-appreciation-mortgage.html

Figure 2.4: Risk sharing mortgages in
the media

There are two important issues or concerns that emerge when home
finance contracts involve more risk sharing. The first concern, if re-
payments are tied to the value of the property, there may be under-
investment in home improvements. Appreciation due to improve-
ments is shared between owner and lender, why would the home-
owner add improvements to the house if any resulting house price
increase is shared with the lender? Similarly, some of the costs of de-
preciation resulting from poor maintenance would be passed on to
lenders, stoking moral hazard. One response to this is to tie mortgage
value to wider house price indices, rather than the value of the par-
ticular house (this is the approach taken by PartnerOwn). But this is
technically challenging in many cases.

The second concern is that these contracts would not always reduce
consumption risk of households. A standard debt-financed mortgage
places all of the appreciation risk with the borrower. This means that
if house prices increase, the borrower can always afford to move into a
similar house, perhaps in order to take a new job. Shared responsibil-
ity mortgages, by restricting the borrower's exposure to appreciation
risk, can prevent borrowers from being able to purchase similar prop-
erties if they need to move. This problem is captured in the Daily

https://www.rightmove.co.uk/property-for-sale/Canterbury/shared-ownership.html
https://www.rightmove.co.uk/property-for-sale/Canterbury/shared-ownership.html
https://www.rightmove.co.uk/property-for-sale/Canterbury/shared-ownership.html
https://www.rightmove.co.uk/property-for-sale/Canterbury/shared-ownership.html
http://partnerown.com/
http://www.dailymail.co.uk/money/mortgageshome/article-3684914/Barclays-charged-90-year-old-widow-177-750-repay-22-250-shared-appreciation-mortgage.html
http://www.dailymail.co.uk/money/mortgageshome/article-3684914/Barclays-charged-90-year-old-widow-177-750-repay-22-250-shared-appreciation-mortgage.html
http://www.dailymail.co.uk/money/mortgageshome/article-3684914/Barclays-charged-90-year-old-widow-177-750-repay-22-250-shared-appreciation-mortgage.html
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Mail story referred to in Figure 2.4. In this case, the pensioner home-
owner could not afford to downsize as a result of the large increases in
property values since the initiation of the shared responsibility-type
mortgage.

Aside from these concerns with the risk sharing aspects of shared
responsibility mortgage contracts, a further question is to ask, how
house price risk should be allocated between households. While the
introduction of Shared Responsibility Mortgages would shift house
price risk away from indebted households, it would also shift this risk
toward other agents in the economy, including banks. It is not clear
that there is much appetite to increase the exposure of savers and the
financial sector to house price fluctuations.

Case study: Student loans or student shares?

Let's consider the main features of student loans in the United King-
dom. Interest is charged at a reasonably high rate (Retail Price Index
inflation plus 3%). Repayments are made only when gross income ex-
ceeds a threshold (currently the threshold is £21,000). The minimum
repayment rate is 9% of the difference between gross income and the
income threshold when positive. When the principal is fully paid,
repayments cease. 30 years after repayments start, the balance of the
debt is written off and repayments cease.

We can summarise these features as follows: Low income borrow-
ers pay nothing (like equity). Middle income borrowers repayments
tied to income (like equity). Repayments of high income borrowers
capped by loan value (like debt).

Borrower lifetime earnings

Value of repayments

PB

Threshold
0

0

Figure 2.5: Borrower earnings and the
value of student loan repayments

The payoff to the taxpayer for a given student loan is loosely ap-
proximated by Figure 2.5. Repayments are contingent on income
when income is sufficiently but not too high. This does allow a high
degree of risk sharing. It also means that on average, philosophy ma-
jors will repay less than financial economics majors.
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Problems for Chapter 2

Exercise 2.1 What is the difference between a forward contract and a
futures contract? In what situations would you expect a firm to favour the
use of forward contracts over futures contracts and vice-versa?

Exercise 2.2 Technology firms typically raise external funds by issuing eq-
uity, rather than by issuing debt. Utilities (for example electricity generating
firms) typically raise external funds by issuing debt, rather than by issuing
equity. Discuss this distinction in the context of the motivations for equity
and debt finance considered in this Chapter.

Exercise 2.3 Many technology firms initially raise funds through private
equity, then later through public stock markets. What explains the initial
preference for private funding sources and the later preference for public
funding sources?

Exercise 2.4 With notable exceptions (including Manchester United, Celtic
Football Club, Ajax, Sporting Lisbon, Porto, Roma, Juventus and Lazio)
football clubs typically do not sell shares in public markets. Rather, shares in
football clubs are typically traded in private markets. What do you think are
the main considerations determining the choice between the public or private
financing of football clubs?

To help answer this question, or just for your own interest, you may con-
sider reading Manchester United's latest Annual Report:
http://ir.manutd.com/~/media/Files/M/Manutd-IR/

Annual%20Reports/2015-20f.pdf

Exercise 2.5 Small firms typically raise debt finance through bank loans.
Larger firms are more likely to raise debt finance through bond markets.
Why?

Exercise 2.6 In the United States, firms are more likely to raise funds in
decentralised markets (that is, by issuing publicly traded shares and bonds)
than in Europe, where firms rely more on bank loans. Why?

Exercise 2.7 Do you think that the UK student loan scheme offers the appro-
priate balance between risk sharing and moral hazard? Explain.

Exercise 2.8 Do you think that a Graduate Tax, that is an additional flat-
rate income tax for former university students, would be a better way to fund
university tuition?

Exercise 2.9 Do you think that standard mortgage contracts offer the appro-
priate balance between risk sharing and moral hazard? Explain.

Exercise 2.10 Hong Kong has the world's largest ratio of stock market cap-
italisation to GDP. Why? (Your answer should consider multiple competing

http://ir.manutd.com/~/media/Files/M/Manutd-IR/Annual%20Reports/2015-20f.pdf
http://ir.manutd.com/~/media/Files/M/Manutd-IR/Annual%20Reports/2015-20f.pdf
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hypotheses, as well as global patterns in stock market capitalisation to GDP
ratios.)





3
Fixed income

Be sure you know the condition of your flocks,
give careful attention to your herds;
Proverbs 27:23

You wanna know what's more important than throwin' away money at a
strip club? Credit
Jay Z, The Story of O.J.
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Introduction

In this chapter we develop tools to understand the relationship be-
tween the value of a bond and market interest rates. When market
interest rates increase, money set aside in an account will increase in
value more quickly, all else equal. This means we need less funds to-
day to replicate an asset with fixed future payoffs. The upshot is that
the value of a bond is inversely related to market interest rates.

In this chapter, we develop formulas to determine the present val-
ues of standard types of bonds, the sensitivities of these present values
to fluctuations in market interest rates (Duration). We then consider
the sensitivity of Duration itself to fluctuations in market interest rates
(Convexity) and discuss the importance of bond Convexity for valua-
tion and risk management.

As in Chapter 1, we discount future payments into present values
by considering how much money we would need today to purchase
a portfolio of assets that would replicate the future payments. This
approach gives us a correspondence between market interest rates
available on savings assets, and the discount rates we use to value fu-
ture payments.

In this chapter, we will focus on assets that provide a risk free se-
quence of payments. This contrasts with future chapters that pay
more attention to risk across states but do not emphasise the dynamic
sequence of payments. Also, in this chapter, we will assume that in-
terest rates are constant across maturities at any point in time. We will
think of a fall in the discount rate as being a fall in the interest rate at
each maturity. The reason for this assumption is of course to simplify
the math and intuition. We had better quickly look at some data to get
an idea of how unrealistic this assumption is.

Figure 3.1 plots the historical behaviour of annual effective interest
rates for 1 year and 10 year US Government bonds. The assumption
in this chapter is that these interest rates are identical at each point in
time. It is clear from Figure 3.1 that this assumption is going to result
in some error. Over the past 50 years, these interest rates have tended
to move together over long periods, but at shorter frequencies these
long and short term interest rates can diverge. We need to keep this
weakness in mind when we work with the material in this chapter.

Present value

Recall from Chapter 1 that under continuous compounding, the future
value at time t, A(t) of an account with initial amount invested A0 is
given by

A(t) = exp(rt)A0. (3.1)



53

1970 1980 1990 2000 2010

0

5

10

15

Date

In
te

re
st

ra
te

,%
p.

a.
A: Long and short term rates over time

1 Year
10 Year

0 5 10 15 20
0

5

10

15

20

1 year rate, % p.a.

10
ye

ar
ra

te
,%

p.
a.

B: Long and short term rates

1970 1980 1990 2000 2010
−4

−2

0

2

4

Date

10
Y

-1
Y

ra
te

,%
p.

a.

C: The term spread over time

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

∆ 1 year rate, % p.a.

∆
10

ye
ar

ra
te

,%
p.

a.
D: Daily movements in long and short rates

Figure 3.1: Interest rates, long and short
(US Government bonds) Source: Fred
Database, St Louis Federal Reserve
(Series identifiers: DGS1, DGS10)We say that A0, the amount invested today, is the present value of

A(t). Given future payoff A(t) along with the time of the payoff t and
the interest rate r, we can derive the present value v from Equation 3.1:

exp(rt)v = A(t)

v =
1

exp(rt)
A(t)

v = exp(−rt)A(t). (3.2)
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Throughout this chapter, we will be applying this formula to se-
quences of future payments.

A bond b is defined by n cash flows xi that occur at dates ti, for
i ∈ {1, 2, 3, ..., n}. Let r be the continuously compounding discount
rate. The discount rate r is typically determined by the market interest
rate, which can be thought of as the opportunity cost of funds. For the
purposes of this lecture, we abstract from risk premia and from the
yield curve, assuming a constant discount rate for all future payments.
The main lessons from this lecture are still valid after adding in more
structure, but the math can get a lot more complicated.

By Equation 3.2, we know that the present value of a future cash
flow x is

v(x) = exp(−rt)x,

where t is the time in years before the cash flow x is realised.
Figure 3.2 presents the present values (v) of a fixed payment of 100,

varying the continuously compounded discount rate (r) and the time
to maturity (n). Inuitively, when the discount rate is positive, pay-
ments that have a longer time to maturity have a lower present value
(the schedules are downward sloping). For all payments with posi-
tive time to maturity, the present value of the payment is decreasing
in the discount rate (the schedules move to the bottom left corner as
discount rates increase).

Figure 3.2: Maturity and present value
of a payment of 100 at time n.

0 50 100
0

50

100

r = 5%

r = 0

r = 2.5%

r = 10%
n

v

A bond, a collection of payments, will also have a present value that
is decreasing in the discount rate, and at least in some loose sense is
decreasing in the maturity of the payments. For a portfolio manager,
understanding the sensitivity of instrument valuations to movements
in interest rates is crucial for risk management.

The present value of bond b is denoted by v. To find the present
value of a bond, we add up the present values of all the payments:

v = exp(−rt1)x1 + exp(−rt2)x2 + exp(−rt3)x3 + ... + exp(−rtn)xn

=
n

∑
i=1

exp(−rti)xi

Lets look at a few examples. We start with an annuity, which is a
schedule of fixed constant payments. Fixed rate mortgages are typi-
cally structured as annuities, with constant repayments over the life of
the loan.

Example 3.1 Let b be an annuity, with constant coupon payments x at
times ti = {1, 2, 3, ..., n}. What is the present value of bond b?

Trick. Recall that for geometric sums
with 0 < z < 1, we have

n

∑
j=1

zj =
z(1 − zn)

1 − z
.

We'll use variations of this trick
throughout this chapter, with z := e−r

and j := t.
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Solution 3.1

v =
n

∑
i=1

exp(−rti)xi

=
n

∑
t=1

e−rtx

=
e−r(1 − e−rn)x

1 − e−r =
1 − e−rn

er − 1
x.

What happens as the maturity of the annuity increases to infinity?
An annuity that never matures is called a perpetuity. The UK Govern-
ment once issued perpetuities, referred to as Consols. Unfortunately
for finance nerds, the UK Government has now repurchased all out-
standing Consols, with the last of these bonds taken out of circulation
in 2015. Perpetuities promise an infinite schedule of repayments.
What is their present value?

Example 3.2 Let b be a perpetuity, with constant coupon payments x at
times ti = {1, 2, 3, ..., ∞}. What is the present value of bond b?

Solution 3.2

v =
∞

∑
t=1

e−rtx

=
e−rx

1 − e−r =
x

er − 1
.

≈ x
r

When r is small.

Example 3.2 shows that the present value of a perpetuity is fi-
nite, with a reasonably tractable solution. Figures 3.3 and 3.4 plot the
present values of perpetuities against those of annuities with ever in-
creasing maturities. If the maturity of the annuity is sufficiently long,
and the discount rate is sufficiently high, then the present value of
the annuity will approach that of a perpetuity with the same coupon
payments.

Figure 3.3: Maturity (n) and present
value (v) of annuities and a perpetuity

with equal coupon payments
(x = 5, r = 0.05).
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Figure 3.4: Maturity (n) and present
value (v) of annuities and a perpetuity

with equal coupon payments
(x = 2, r = 0.02).
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Now lets look at a more standard bond structure. A bullet loan spec-
ifies a series of fixed coupon payments over the life of the loan. The
final payment includes both a coupon payment and also the principal
payment, which is typically the face value of the loan. Most corporate
bonds and government bonds have this structure.

Example 3.3 Let b be a bond with coupon payments xi = x for i ∈
{1, ..., n − 1}, and xn = x + f , f is the face value of the bond. Payments
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occur at times ti = i. In words, there is a constant payment x at the end of
each year for n years, plus an additional payment of the face value f at the
final payment date. Essentially, the bond is a combination of an n period an-
nuity and a zero coupon bond maturing at time n. What is the present value
of b?

Solution 3.3

v =
n

∑
i=1

exp(−rti)xi

=
n

∑
t=1

e−rtx + e−rn f

The first term on the right hand side is just an annuity, so we can use the
solution from example 3.1

v =
1 − e−rn

er − 1
x + e−rn f .

Proposition 3.1 When the annualised effective discount rate is equal to the
coupon rate of a bullet loan (er − 1 = x/ f ), the present value is independent
of the maturity of the loan.

Proof. First, we'll take the solution to Example 3.3 and isolate the
terms involving maturity, n,

v =
1 − e−rn

er − 1
x + e−rn f .

=
x

er − 1
− e−rn

er − 1
x + e−rn f .

=
x

er − 1
− e−rn f

[
1

er − 1
x
f
− 1
]

.

This expression is insensitive to n when the term in square brackets is
equal zero:

1
er − 1

x
f
− 1 = 0

x
f
= er − 1.

Figure 3.5 uses the solution to Example 3.3 to plot the present value
of a bond with coupon of 5 and a face value of 100, for a range of
maturities and discount rates. When the discount rate is zero (r =

0%), an increase in the maturity of the bond means an increase in
coupon payments. These coupon payments are not discounted, so the
present value of the bond increases linearly in maturity.
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For effective annual discount rates between 0% and 5% (5% is the
coupon rate in this example), the present value of the bond is increasing
in the maturity of the bond. Increases in maturity delay the large face
value payment of 100, but they increase the number of coupons re-
ceived, more than compensating the holder. When the effective annual
discount rate is equal to the coupon rate of 5% in this example, The
present value of the bond is independent of the maturity, as shown by
Proposition 3.1.

For high discount rates, the sensitivity of present values to maturity
is low when the maturity is already long. In Figure 3.5, the green
schedule is very flat when n is large. Further increases in maturity add
payments which are heavily discounted, and they delay the large face
value payment which has already been heavily discounted.

0 10 20 30 40 50
0

100

200

300

400

r = 0%

r = 5%

r = 2.5%

r = 10%

n

v

Figure 3.5: Maturity and present value
of a bond with annual coupon of 5 and
face value of 100, maturing at time n.

Consider two bonds, one with maturity of 30 years and one with
maturity of 50 years. From Figure 3.5, we can see that the downside
risk for these bonds, the risk of increased interest rates, is similar in
magnitude. On the upside however, the sensitivity of prices to interest
rates is much greater for the 50 year bond than for the 30 year bond.
Figure 3.6 plots the present values for three bonds, maturing at dates
10, 30 and 50. Each bond has a coupon of 5 and a face value of 100.
The plot shows how the present values of these bonds change with
respect to changes in the discount rate. When interest rates are low,
the slope of the schedules is much steeper for the longer maturity
bonds than for the shorter maturity bonds. This relationship between
maturity and the sensitivity of present values to discount rates is
formalised by the notion of duration, which we define and explore in
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the next section (Section 3).
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Figure 3.6: Discount rates and present
values of bonds with annual coupon of 5
and face value of 100, maturing at 10, 30
and 50 years, and a perpetuity.

Comparing just the 30 and 50 year bonds, the 50 year bond is much
more sensitive to discount rate movements when discount rates are
low, but behaves similarly to the 30 year bond when discount rates
are at or above the coupon rate. Compared with the 30 year bond, the
50 year bond appears to have a lot of upside risk if discount rates fall,
with similar downside risk if interest rates increase. This property is
formalised by the concept of convexity, which we explore in Section 3.

Duration

Duration is a measure of the sensitivity of the present value of a bond
to fluctuations in the discount rate. In Figure 3.2 we saw that for short
maturity payments, the present value of short maturity payments is
insensitive to fluctuations in discount rates; the present value of long
maturity payments is very sensitive to fluctuations in discount rates.

For a zero coupon bond, perhaps this link between maturity and
sensitivity to discount rate movements is straightforward. When we
have a security or bond with many payments, duration is a measure
that links the maturities of the schedule of payments to the sensitivity
of present values to interest rate movements.

Definition 3.1 The Modified Duration (duration for the purposes of this
course) of a bond is the semi-elasticity of the present value of the bond, v, to
fluctuations in the discount rate r.

D = −1
v

dv
dr

.
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Note that this can also be written as D = −d log v
dr

.

Proposition 3.2 Let r be the continuously compounded discount rate. The
duration of a bond can be expressed as follows:

D =
∑n

i=1 ti exp(−rti)xi

∑n
i=1 exp(−rti)xi

Proof.

dv
dr

=
d
dr

[
n

∑
i=1

exp(−rti)xi

]

=
d
dr

[exp(−rt1)x1 + exp(−rt2)x2 + exp(−rt3)x3 + ... + exp(−rtn)xn]

= −t1 exp(−rt1)x1 − t2 exp(−rt2)x2 − t3 exp(−rt3)x3 − ... − tn exp(−rtn)xn

= −
n

∑
i=1

ti exp(−rti)xi

D = −1
v

dv
dr

=
∑n

i=1 ti exp(−rti)xi

∑n
i=1 exp(−rti)xi

This is ugly. And it is even worse if one does not assume contin-
uously compounding discount rates. But some examples are not too
bad.

Note that duration is the present value weighted average of the
timing of payments:1 1 This only holds when discounting by

a continuously compounded discount
rate.

D =
exp(−rt1)x1

∑n
i=1 exp(−rti)xi

t1 +
exp(−rt2)x2

∑n
i=1 exp(−rti)xi

t2 + ...+
exp(−rtn)xn

∑n
i=1 exp(−rti)xi

tn

Example 3.4 Let b be a zero coupon bond, with only one payment x occur-
ing at time t = n. What is the duration of bond b?

Solution 3.4

D =
∑n

i=1 ti exp(−rti)xi

∑n
i=1 exp(−rti)xi

=
ne−rnx
e−rnx

= n.
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That worked out nicely! For a zero coupon bond, the semi-elasticity of
present value to discount rate movements is equal to the maturity of
the bond.

Example 3.5 Let b be an perpetuity, with equal payments xi = x for
i ∈ {1, 2, 3...}, occuring at time ti = i. In words, there is a constant payment
x at the end of each year. The British government once issed perpetuities as
their main source of funding. These bonds were called Consols. What is the
duration of b?

Solution 3.5 If you already have the formula for duration of an annuity as
in Example 3.5, then the easy way is just to take the limit as n approaches in-
finity. If you don't already have the duration formula for an annuity, solving
for the duration of a perpetuity is reasonably straightforward.

D =
∑∞

i=1 ti exp(−rti)xi

∑∞
i=1 exp(−rti)xi

=
∑∞

t=1 te−rtx
∑∞

t=1 e−rtx

D =
∑∞

t=1 te−rt

∑∞
t=1 e−rt (3.3)

By Property 3.4, the denominator of the right hand side of (3.3) is

∞

∑
t=1

e−rt =
e−r

1 − e−r .

By Property 3.5, the numerator is

∞

∑
t=1

te−rt =
e−r

(1 − e−r)2 .

So, we now have

D =

e−r

(1 − e−r)2

e−r

1 − e−r

=
1

1 − e−r .

Figure 3.7 presents the relationship between bond maturity and
duration for a zero coupon bond, an annuity, and two bonds with
coupon rates of 1% and 4% respectively. When the maturity of a bond
increases, the bond's duration increases. For a zero coupon bond,
this relationship is one-to-one. For a coupon bond, this relationship
flattens as the maturity of the bond increases. This effect is clear to
see even when the coupon is very small (the 1% coupon bond behaves
very differently than the zero coupon bond).
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Figure 3.7: Maturity and duration of
bonds maturing at time n. The discount
rate is r = 5%.

Convexity

Convexity is a measure of the sensitivity of a bond's duration to the
discount rate. In Figure 3.6 we compared a perpetuity with some
long dated coupon bonds or bullet loans. We saw that the perpetuity
had similar duration and present value for discount rates close to
the coupon rate. However, when discount rates fell, the perpetuity
increased in value more sharply than the 30 and 50 year bonds. In
sum, the perpetuity had similar downside risk, but more upside risk.
This concept is formalised by the notion of convexity.

Definition 3.2 The convexity, C, of a bond b with present value v, is
defined as follows:

C =
1
v

d2v
dr2 .

Proposition 3.3 Convexity:

C = D2 − dD
dr
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Proof. Starting with the definition of convexity:

C =
1
v

d2v
dr2

=
1
v

d
dr

[
dv
dr

]
=

1
v

d
dr

[−vD]

=
1
v

[
−D

dv
dr

− v
dD
dr

]
= −D

1
v

dv
dr

− dD
dr

= D2 − dD
dr

Example 3.6 Let b be a zero coupon bond, with only one payment x occur-
ing at time t = n. What is the convexity of bond b?

Solution 3.6 From Example 3.4 we have D = n.

C = D2 − dD
dr

= n2.

That worked out nicely!

Example 3.7 Let b be an perpetuity, with equal payments xi = x for
i ∈ {1, 2, 3...}, occuring at time ti = i. In words, there is a constant payment
x at the end of each year. The British government once issed perpetuities as
their main source of funding. These bonds were called Consols. What is the
convexity of b?

Solution 3.7 From Example 3.5 we have D =
1

1 − e−r .

C = D2 − dD
dr

=

[
1

1 − e−r

]2
− d

dr

[
1

1 − e−r

]
=

[
1

1 − e−r

]2
− −e−r

(1 − e−r)2

=
1 + e−r

(1 − e−r)2 .

Note that this solution can be approximated by C ≈ 2 − r
r2 when r is small.
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Immunization

Figure 3.8 presents the present values of a perpetuity and a zero
coupon bond. The maturity of the zero coupon bond is such that
the duration of the two bonds are equal when the present values are
equal. The perpetuity is more convex than the zero coupon bond. The
downside risk is smaller for the perpetuity than for the zero coupon
bond. The upside risk is greater for the perpetuity than for the zero
coupon bond.
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Figure 3.8: Discount rates and present
values of perpetuity with annual
coupon of 5 and zero coupon instru-
ment with equal present value and
duration at discount rate (r = 0.05).

Consider an insurance company with long dated liabilities and long
dated assets. Ideally, this insurance company would have a portfolio
of assets with present value exceeding the present value of the liabil-
ities. Also, the insurance company would wish to match the duration
of the portfolio of assets with the portfolio of liabilities. When this is
achieved, and the portfolio of assets is more convex than the portfolio
of liabilities, the portfolio is said to be immunized against interest rate
risk. Increases in the discount rate reduce the present value of liabili-
ties further than they reduce the present value of assets. Decreases in
the discount rate increase the present value of liabilities by less than
they increase the present value of the assets.

Negative convexity

Consider a callable bond with coupon of 5, face value of 100 and a
strike price of 100. That is, the borrower can re-purchase the bond
at any time for 100. Figure 3.9 presents a plot of present values for
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this bond. When the present value of the bond rises above the strike
price, the borrower will call the bond, repurchasing it for 100 (possibly
financing this with a new bond issue). This option effectively caps
the present value of the bond. Near the strike price, the shape of the
present values becomes concave. We refer to this as negative convexity.
The holder of the bond suffers the downside risk of increased discount
rates, but they do not enjoy the upside risk of decreases in discount
rates.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
0

20

40
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Figure 3.9: Present value of a 10 year
callable bond with annual coupon of 5,
face value of 100 and strike price of 100.
The dashed schedule traces the present
values for a non-callable bond.

US mortgages bear this feature. Standard US mortgages are 30
year fixed rate loans with a prepayment option---if interest rates fall,
borrowers can seek a new mortgage at a lower rate, prepaying the
original loan without penalty. Before the 2007-08 financial crisis,
this was considered quite a big problem for the US Mortgage Backed
Security market.

In the previous sections, we only considered bonds with fixed,
known future payments. The callable bonds considered in this section
have risky cash flows that depend on both fluctuations in interest
rates and the actions of the borrower. If we have a large portfolio of
bonds with uncorrelated credit risk, or if we have a portfolio of safe
government bonds, then the assumption of fixed future cash flows
is fairly reasonable. When we have a portfolio of risky bonds with
correlated risk, or a portfolio of bonds with embedded call options, or
a portfolio of bonds with floating interest rates, then the cash flows of
our portfolio will be correlated with our discount rates. When we are
taking into account the correlation between discount rates and future
cash flows, we can generalise the concept of duration.



65

Effective duration is defined as the semi-elasticity of present value
to changes in discount rates, taking into account correlations between
discount rates and cash flows. Consider the callable bond from this
section. When the discount rate is sufficiently low, the effective du-
ration of the bond becomes zero: further falls in the discount rate
encourage the borrower to call the bond, changing the cash flows of
the bond and limiting the potential upside risk for the present value of
the bond.
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Problems for Chapter 3

Exercise 3.1 Given the following information about bond b, calculate the
bond's present value v and duration D.

Payment 1 t1 = 1.5 x1 = 40
2 t2 = 2 x2 = 50
3 t3 = 2.5 x3 = 20

The (continuously compounded) discount rate is 3%.

Exercise 3.2 You have the following information about the present values
and discount rates for a bond b:

r v
0% 105
2% 104
4% 95

a. Use this information to calculate a numerical estimate of duration for the
bond, evaluated at r = 2%.

b. Use this information to calculate a numerical estimate of convexity for the
bond, evaluated at r = 2%.

c. What does your answer to (b) tell you about the terms of the bond, if
anything?

Exercise 3.3 You are given the following formula to derive the duration of
a bond, where x is the annual coupon of the bond, f is the face value of the
bond, n is the maturity of the bond and r is the continuously compounding
discount rate.

D =

(
1

1 − e−r −
n

ern − 1

)
x +

er − 1
ern − 1

n f

x +
er − 1
ern − 1

f

From this formula, derive formulas for the duration of

a. a zero coupon bond,

b. an annuity,

c. a perpetuity.

Exercise 3.4 Explain the concept of immunization.

Exercise 3.5 Use the concepts of duration and convexity to describe why
banks may be reluctant to issue long term fixed interest rate loans when
interest rates are low.
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Exercise 3.6 a. Consider a perpetuity and a zero coupon bond with equal
present value and duration. Prove that the perpetuity has greater convex-
ity.

b. Describe in words why a perpetuity has greater convexity than a zero
coupon bond with equal present value and duration.

Exercise 3.7 What is the effective duration of a stock?
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Selected solutions for Chapter 3

Exercise Solution 3.1 First, we'll take a look at the bond and determine
some general characteristics. This will tell us how to approach the problem
and to establish initial guesses about the present value and duration of the
bond.

The bond has three payments, at 18 months, 24 months and 30 months
from now. The payments are not constant over time (the payments are 40, 50
and 20). It follows that the bond is not a zero coupon bond, it is not an an-
nuity, and it is not a standard coupon bond. So, we cannot use the standard
formulas presented within the lecture.

Fortunately, as there are only three payments, it is pretty straightforward
to solve for present value and duration "the long way".

Present value
First lets establish bounds. The total amount of cash flows is

x1 + x2 + x3 = 40 + 50 + 20 = 110.

So, we would expect the present value of the bond to be positive but less than
110. To solve for the present value of the bond, we sum the present values of
each payment:

v = v1 + v2 + v3

= exp(−rt1)x1 + exp(−rt2)x2 + exp(−rt3)x3

= exp(−0.03 × 1.5)40 + exp(−0.03 × 2)50 + exp(−0.03 × 2.5)20

= 38.24 + 47.09 + 18.55 (Record these values for the duration calculations.)
= 103.88.

We should check that this answer is reasonable given our initial upper bound
of 110. It is.

Duration
It would be helpful to avoid taking derivatives. By Proposition 3.2, we

know that the duration of a bond is equal to the present value weighted aver-
age of the timing of payments.

Again, first lets establish bounds. The first payment is at time 1.5, and
the second payment is at time 2.5. These timings provide lower and upper
bounds on the duration of the bond.

The present value weighted average of the timing of payments can be
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expressed as follows:

D =
n

∑
i=1

vi
v

ti

=
v1

v
t1 +

v2

v
t2 +

v3

v
t3

=
38.24

103.88
1.5 +

47.09
103.88

2 +
18.55
103.88

2.5

= 0.55 + 0.91 + 0.45

= 1.91.

This answer is consistent with our upper and lower bounds of 1.5 and 2.5.

Exercise Solution 3.2

a. By Definition 3.1, Duration is given by

D =
−1
v

dv
dr

.

In this example, we are not given functional forms, and cannot take deriva-

tives directly. Instead, we need to approximate dv
dr

using finite difference
methods. We can use the finite difference formula

dv
dr

≈
v(x + 1

2 h)− v(x − 1
2 h)

h
.

We need to set x and h such that we can use the information given in the
question. Specifically, we need x + 1

2 h = 4%, and x − 1
2 h = 0%. It

follows that x = 2%, and h = 4%.
We can re-write the formula as follows

dv
dr

≈ v(r = 4%)− v(r = 0%)

4%
.

Note that v(r = 0%) represents the present value evaluated at discount
rate r = 0%.

dv
dr

≈ 95 − 105
0.04

≈ − 10
0.04

.

We are asked to find the duration at r = 2%. Therefore, the present value
is

v = 104.

Now, we use these values to solve for duration

D =
−1
v

dv
dr

=
−1
104

×
(
−10
0.04

)
= 2.40.
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In words, we would expect the value of the bond to fall by 2.4% following a
1% increase in discount rates.

b. By Definition 3.2, Duration is given by

C =
1
v

d2v
dr2 .

In this example, we are not given functional forms, and cannot take deriva-

tives directly. Instead, we need to approximate d2v
dr2 using finite difference

methods. We can use the finite difference formula

d2v
dr2 ≈ v(x + h)− 2v(x) + v(x − h)

h2 .

Again, we need to set x and h such that we can use the information given
in the question. Specifically, we need x + h = 4%, and x − h = 0%. It
follows that x = 2%, and h = 2%.

We can re-write the formula as follows

dv
dr

≈ v(r = 4%)− 2v(r = 2%) + v(r = 0%)

(2%)2 .

Note that v(r = 0%) represents the present value evaluated at discount
rate r = 0%.

dv
dr

≈ 95 − 2(104) + 105
0.022

≈ − 8
0.0004

.

We are asked to find the convexity at r = 2%. Therefore, the present value
is

v = 104.

Now, we use these values to solve for convexity

C =
1
v

d2v
dr2

=
1

104
×
(

−8
0.0004

)
= −192.

c. This bond has negative convexity. This may mean that the bond is callable
by the issuer.
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Some sums

Property 3.1
n

∑
i=0

xi =
1 − xn+1

1 − x

Proof.

n

∑
i=0

xi = 1 + x + x2 + ... + xn

=
(1 − x)(1 + x + x2 + ... + xn)

1 − x

=
1(1 − x) + x(1 − x) + x2(1 − x) + ... + xn(1 − x)

1 − x

=
1 − x + x − x2 + x2 − x3 + ... + xn − xn+1

1 − x

=
1 − xn+1

1 − x

Property 3.2
n

∑
i=1

xi =
x(1 − xn)

1 − x

Proof.

n

∑
i=1

xi = x + x2 + x3 + ... + xn

= x(1 + x + x2 + ... + xn−1)

= x
n−1

∑
i=0

xi

=
x(1 − xn)

1 − x
by Property 3.1.

Property 3.3 If x ∈ (−1, 1),

∞

∑
i=0

xi =
1

1 − x

Proof. The easy way is to just take the limit of Property 3.1 as n ap-
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proaches ∞. But I think the following way is particularly clever:
∞

∑
i=0

xi = 1 + x + x2 + x3 + ...

= 1 + x(1 + x + x2 + x3 + ...)

= 1 + x
∞

∑
i=1

xi

Subtract x ∑∞
i=1 xi from both sides,

(1 − x)
∞

∑
i=1

xi = 1.

Now divide both sides by (1 − x),
∞

∑
i=1

xi =
1

1 − x
.

Property 3.4 If x ∈ (−1, 1),
∞

∑
i=1

xi =
x

1 − x

Proof. We just want to find a way to apply Property 3.3. One approach
is to factor out x,

∞

∑
i=1

xi = x + x2 + x3 + ...

= x(1 + x + x2 + x3 + ...)

= x
∞

∑
i=0

xi

=
x

1 − x
.

Alternatively, we can just add and subtract 1,
∞

∑
i=1

xi = x + x2 + ...

= −1 + 1 + x + x2 + ...

= −1 +
∞

∑
i=0

xi

=
1

1 − x
− 1

=
x

1 − x
.



73

Property 3.5 If x ∈ (−1, 1),

∞

∑
i=1

ixi =
x

(1 − x)2 .

Proof. As usual, we start by writing out the sum:

∞

∑
i=1

ixi = x + 2x2 + 3x3 + ...

The trick with this one is to recognise that it almost looks like a deriva-
tive. If we factor out x then we get

∞

∑
i=1

ixi = x(1 + 2x + 3x2 + ...)

The term in brackets is indeed a derivative, so lets see if that helps us
solve the problem:

∞

∑
i=1

ixi = x
d

dx

[
x + x2 + x3 + ...

]
= x

d
dx

[
∞

∑
i=1

xi

]

= x
d

dx

[
x

1 − x

]
By Property 3.4

= x
[

1
(1 − x)2

]
By the quotient rule, if

f (x) = g(x)/h(x), then

f ′(x) =
g′(x)h(x)− g(x)h′(x)

[h(x)]2
.

=
x

(1 − x)2 .





4
Forwards

It is difficult to get the news from poems yet men die miserably every
day for lack of what is found there.
William Carlos Williams
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Introduction and overview

Lets start with an excerpt from a Stephen Dubner interview of Ray
Dalio on the Freakonomics podcast.1 1 The full interview available here

http://freakonomics.com/
podcast/ray-dalio/ [accessed 9
April 2018].

DUBNER: Can you tell me briefly how you helped McDonald’s launch the
McNugget?
DALIO: Well, okay — I graduated from business school in 1973, and
I traded commodities, and I love to trade commodities, and I love the
mechanics of it. There was something about — you can grow a chicken
and it’s so many pounds of this and that that makes the chicken come
around and blah blah blah. And I had two clients at the time: McDon-
ald’s and a chicken producer. And McDonald’s wanted to come out
with the McNuggets. But there was a lot of volatility in the chicken
market at that time and they were worried that if they set a menu price
and the price of chicken then went through the roof that they would get
squeezed or they’d have to raise the prices and it would be unstable.
And were they worried that their introduction of the product was going to
spike demand or spike price because of their action because they’re that big? Or
orthogonal to that.
They were just worried that the cost of the chicken would go up. But
there was not a way for them to hedge that, because there was not an
adequate chicken market. But the producer of the chickens — since a
chicken is mostly a little chick and then it has a lot of grain that’s added,
and you could use the futures market — what I did is I showed him
how we can hedge his cost and that he could provide a fixed price to
McDonald’s for chicken McNuggets.
He could hedge his costs by buying corn or buying or selling corn and soybean
futures then, is that the idea?
Yeah, corn and soybean meal futures because that was where his volatil-
ity was. He could lock it through. And so by doing that we engineered
that. I don’t know how interesting it is, but it was an engineering exer-
cise.

In general, a forward contract will help agents solve the following
problem: Bernie wishes to lock in an asset price at time t for delivery
of asset X at time T. Sam agrees to deliver the asset at specified time
T. The price agreed at time t for this contract is denoted F(X, t, T).
Lets look at some examples:

Bonds

Example 4.1 Let Bt,t+2 be a two year risk free bond issued at time t and
maturing at time t + 2. Bond Bt,t+2 has a face value of FV(Bt,t+2) = 100,
and pays coupon annually with coupon rate rt,t+2 = 5%. The market price
of bond Bt,t+2 at time t is Pt(Bt,t+2) = 100. Let Bt,t+1 be a one year risk
free bond issued at time t and maturing at time t + 1. Bond Bt,t+1 has a face
value of FV(Bt,t+1) = 100, and pays coupon annually with coupon rate
rt,t+1 = 7%. The market price of bond Bt,t+1 at time t is Pt(Bt,t+1) = 100.

http://freakonomics.com/podcast/ray-dalio/
http://freakonomics.com/podcast/ray-dalio/
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What is the arbitrage-free ex-coupon price F(Bt,t+2, t, t + 1)?

Solution 4.1 We'll start by considering the cash flows of the two bonds.
The cash flows for bonds Bt,t+2 and Bt,t+1 are

t+0 t+1 t+2

Period

-100
Pt(Bt,t+2)

Initial price

5
rt,t+2 × FV(Bt,t+2)

Coupon

105
FV(Bt,t+2) + (rt,t+2 × FV(Bt,t+2))

Coupon plus principal

Figure 4.1: Bond Bt,t+2

t+0 t+1

Period

-100
Pt(Bt,t+1)

Initial price

107
FV(Bt,t+1) + (rt,t+1 × FV(Bt,t+1))

Coupon plus principal

Figure 4.2: Bond Bt,t+1

What we want to do is construct a strategy, using bond Bt,t+1 and the
forward, F(Bt,t+2, t, t + 1), that replicates the payoffs of the bond Bt,t+2. In
this example, the strategy is quite simple. At time zero, we buy the one year
bond Bt,t+1 and the forward F(Bt,t+2, t, t + 1). At time 1, we receive coupon
and principal on the one year bond, we pay the forward price and we receive
the two year bond (ex coupon). At time 2, we receive the final coupon bond
and principal of the two year bond.

t+0 t+1 t+2

Period

-100
Pt(Bt,t+2)

Initial price

107 − F(Bt,t+2, t, t + 1)
(1 + rt,t+1)× FV(Bt,t+1)− F(Bt,t+2, t, t + 1)

Coupon

105
(1 + rt,t+2)× FV(Bt,t+2)

Coupon plus principal

Figure 4.3: Bond Bt,t+1 and forward
contract

This strategy replicates the cash flows of the two year bond when the for-
ward price F(Bt,t+2, t, t + 1) solves

107 − F(Bt,t+2, t, t + 1) = 5.

That is, when F(Bt,t+2, t, t + 1) = 102, which is the arbitrage-free ex-coupon
forward price.
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Yield curves

Example 4.2 Consider example 4.1. What is the arbitrage free forward
interest rate of a bond issued at time t + 1, R(t + 1, t + 2)?

Solution 4.2 The strategy described in Figure 4.3 involves the forward
purchase at time t + 1 of a bond maturing at time t + 2. We can derive the
arbitrage free forward interest rate from the return to this bond.

The forward price of the bond is F(Bt,t+2, t, t + 1) = 102. There is
only one payoff for this bond, at time t + 2, of 105. The forward interest rate
R(t + 1, t + 2) is the effective annual rate of this hypothetical bond:

R(t + 1, t + 2) = 105/102 − 1 = 2.94%

Foreign exchange

Example 4.3 Let r(gbp, t, t + 1) = 7% be the interest rate on a one year
riskless bond issued at time t in gbp. Let r(usd, t, t + 1) = 5% be the interest
rate on a one year riskless bond issued at time t in usd. The current exchange
rate is P(gbp/usd, t) = 1.23. That is, 1 British pound equals 1.23 US
dollars. What is the arbitrage-free forward exchange rate F(gbp/usd, t, t +
1)?

Solution 4.3 Similar to the previous example, we want to construct two
portfolios with replicating payoffs, where one of the portfolios uses the for-
ward. The arbitrage-free forward price is the price that ensures that payoffs
are the same across the strategies.

We'll consider the following two strategies:

Strategy 1: Start with gbp 1. Exchange this into usd. Purchase the usd bond.

Strategy 2: Start with gbp 1. Purchase the gbp bond and (1 + r(gbp, t, t +
1)) units of the forward contract.

Figure 4.4 describes these two strategies. The rows differentiate between
currencies, the columns differentiate time periods. Strategy 1 is described by
the blue arrows; first the currency is exchanged then the bond is purchased.
Strategy 2 is described by the red arrows; first the bond is purchased and then
the currency is exchanged.

Strategy 1 Starting with gbp 1, we exchange this into usd:

[gbp1]× P(gbp/usd, t) = usd 1.23.

With the usd 1.23, we buy 1.23 units of the usd bond at time t. At time t + 1,
we have

usd 1.23 × (1 + r(usd, t, t + 1)) = 1.23 × 1.05 = usd 1.29.
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gbp, t gbp, t + 1

usd, t usd, t + 1

1 + r(gbp, t, t + 1)

1 + r(usd, t, t + 1)

P(gbp/usd, t) F(gbp/usd, t, t + 1)

Figure 4.4: Foreign exchange forwards

Strategy 2 Starting with gbp 1, we purchase the gbp bond and 1+ r(gbp, t, t+
1) units of the forward contract. When the bond matures at time t + 1, we
have

1 + r(gbp, t, t + 1) = gbp 1.07.

This converts into F(gbp/usd, t, t + 1)× [gbp 1.07] units of usd.
These two strategies have the same payoffs if and only if the final amount

of usd held in each strategy is the same. In other words,

F(gbp/usd, t, t + 1)× [gbp 1.07] = usd 1.29

F(gbp/usd, t, t + 1) =
1.29
1.07

= 1.21.

Lets add the numbers from our example:

gbp 1, t gbp 1.07, t + 1

usd 1.23, t usd 1.29,t + 1

1 + r(gbp, t, t + 1) = 1.07

1 + r(usd, t, t + 1) = 1.05

P(gbp/usd, t) = 1.23 F(gbp/usd, t, t + 1) = 1.21

Figure 4.5: Foreign exchange forwards
example
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Problems for Chapter 4

Exercise 4.1 The current (time t) exchange rate to convert British pounds
into Australian dollars is P(gbp/aud, t) = 1.72. That is, 1 British pound
will buy 1.72 Australian dollars. The current gbp interest rate on 10-year
government bonds is 1.08% per annum. The current aud interest rate on
10-year government bonds is 2.57% per annum.

Show that the arbitrage-free ten year forward exchange rate F(gbp/aud, t, t+
10) = 1.99.

Exercise 4.2 The current (time t) exchange rate to convert British pounds
into US dollars is P(gbp/usd, t) = 1.29. That is, 1 British pound will buy
1.29 US dollars. The current gbp interest rate on 10-year government bonds
is 1.08% per annum. The current usd interest rate on 10-year government
bonds is 2.29% per annum.

Show that the arbitrage-free ten year forward exchange rate F(gbp/eur, t, t+
10) = 1.45.

Exercise 4.3 The current (time t) exchange rate to convert British pounds
into euros is P(gbp/eur, t) = 1.18. That is, 1 British pound will buy 1.18
euros. The current gbp interest rate on 10-year government bonds is 1.08%
per annum. The current eur interest rate on 10-year (German) government
bonds is 0.31% per annum.

Show that the arbitrage-free ten year forward exchange rate F(gbp/eur, t, t+
10) = 1.09.

Exercise 4.4 Let Bt,t+2 be a two year risk free bond issued at time t and
maturing at time t + 2. Bond Bt,t+2 has a face value of FV(Bt,t+2) = 100,
and pays coupon annually with coupon rate rt,t+2 = 2.30%. The market
price of bond Bt,t+2 at time t is Pt(Bt,t+2) = 100. Let Bt,t+1 be a one year
risk free bond issued at time t and maturing at time t + 1. Bond Bt,t+1

has a face value of FV(Bt,t+1) = 100, and pays coupon annually with
coupon rate rt,t+1 = 1.40%. The market price of bond Bt,t+1 at time t is
Pt(Bt,t+1) = 100.

Show that the arbitrage-free ex-coupon price F(Bt,t+2, t, t + 1) is 99.10.



5
Efficiency

A dungeon horrible, on all sides round,
as one great furnace flamed; yet from those flames
no light; but rather darkness visible
served only to discover sights of woe,
regions of sorrow, doleful shades, where peace
and rest can never dwell, hope never comes
that comes to all, but torture without end
still urges, and a fiery deluge, fed
with ever-burning sulphur unconsumed.
Such place Eternal Justice had prepared
for those rebellious; here their prison ordained
in utter darkness, and their portion set,
as far removed from God and light of Heaven
as from the centre thrice to the utmost pole.
Oh how unlike the place from whence they fell!
John Milton, Paradise Lost, Book I, 61-75.
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Introduction

One thing we are not going to have, now or ever, is a set of models that
forecasts sudden falls in the value of financial assets, like the declines
that followed the failure of Lehman Brothers in September. ... The main
lesson we should take away from the [Efficient Market Hypothesis] for
policymaking purposes is the futility of trying to deal with crises and
recessions by finding central bankers and regulators who can identify
and puncture bubbles. If these people exist, we will not be able to afford
them.
Robert Lucas, 2009.

Asset market efficiency

You will often hear comentators and academics discuss and critique
the Efficient Market Hypothesis (EMH). But the EMH in itself is quite
narrow in its application, referring to the extent to which new infor-
mation is incorporated in asset prices.

What we as economists really care about, or should care about,
is allocative efficiency, which in finance means that savings are being
mobilised into productive investments, and that savers can share the
rewards from those investments.

The two forms of efficiency are related, and departures from the
EMH will result in departures from allocative efficiency. But, its im-
portant to keep in mind that the two concepts are distinct, and what
matters for economic growth and welfare is allocative efficiency.

In the rest of this section, we describe these two concepts of asset
market efficiency in more detail, along with other useful measures of
asset market efficiency.

Allocative efficiency

Allocative efficiency is the broadest and most general form of effi-
ciency that we consider here. The primary roles of financial markets
are (1) to allocate risk and (2) to allocate consumption over time.

Let MRSi
a,b refer to the consumption marginal rate of substitution

of agent i across periods and states a, b. Let MRTa,b refer to the econ-
omy's production marginal rate of transformation across periods and
states a, b. Under perfect markets, efficient allocations of risk require Remember, the marginal rate

of substitution from apples to
oranges is the amount of ap-
ples that you would give up for
one orange. The marginal rate
of transformation from apples to
oranges is the amount of apples
an orchadist would forego per
orange grown if they were to
replace apple trees with orange
trees.

that the following holds

MRSi
z,z′ |t = MRSj

z,z′ |t = MRTz,z′ |t, (5.1)

where z and z′ are different states of the world at a given date t.
In words, for all agents, the rate at which they would forego con-

sumption in one state of the world for consumption in another state
of the world must equal the rate at which the economy can transform
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savings in one state of the world into consumption in another state of
the world.

Also, under perfect markets, efficient allocations of consumption
over time require that the following holds

E[MRSi
t,t+1] = E[MRSj

t,t+1] = E[MRTt,t+1].

In words, for all agents, the rate at which they would forego con-
sumption today for consumption tomorrow must equal the rate at
which the economy can transform savings today into future consump-
tion.

We can combine these two conditions as follows:

MRSi
t−1,t = MRSj

t−1,t = MRTt−1,t.

Allocative efficiency requires that all projects with equal risks and
payoffs should trade at the same price. On other words, allocative
efficiency requires that there are no unexploited opportunities for ar-
bitrage. An explanation of this result is left as an exercise for students.

Example 5.1 Using equation 5.1, describe the efficient allocation of the risk
that your bike is stolen.

Solution 5.1 Let z′ refer to the state of the world in which your bike is
stolen. In state z, your bike is not stolen. All else equal, and in lieu of in-
surance, we would expect that your consumption marginal utility should be
high when your bike is stolen relative to when your bike is not stolen. That
is, without insurance, MRSz,z′ |t > 1. In words, you have a greater desire for
additional income in states where your bike is stolen than in states when your
bike is not stolen---you could use this income to buy a new bike or to cover
public transport costs.

Consider another individual Jamie, (j). Jamie's bike is not stolen in either
state, Jamie is therefore indifferent between additional income in states z, z′.
Mathematically, MRSj

z,z′ |t = 1. Additionally, the production capability
of the economy is unaffected by the stealing of your bike. So the production
marginal rate of transformation is MRTz,z′ |t = 1.

According to Equation 5.1, the efficient allocation of risk requires that
MRSz,z′ |t = MRSj

z,z′ |t = MRTz,z′ |t. This can be achieved with an insurance
contract offered by other agents in the economy, rewarding you with a lump
sum payout in the state that your bike is stolen. This would reduce your
consumption marginal rate of substitution MRSz,z′ |t until MRSz,z′ |t =

MRSj
z,z′ |t = MRTz,z′ |t. In a large economy, the cost of this insurance can be

fully diversified, leaving MRSz,z′ |t = MRSj
z,z′ |t = MRTz,z′ |t = 1

Example 5.2 Using equation 5.1, describe the efficient allocation of business
cycle risk.
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Solution 5.2 A recession is a state of the world in which the cost of produc-
tion of goods is relatively high, MRTz,z′ |t > 1, where z′ is a recession and z is
a boom. It follows that the efficient allocation of risk requires that

MRSi
z,z′ |t = MRSj

z,z′ |t = MRTz,z′ |t > 1.

In words, under the efficient allocations, all agents would wish to exchange
some boom consumption for recession consumption. This allocation can be
thought of as sharing the pain of recessions across agents---we're all in this
together!

Operational efficiency

Operational efficiency refers to firms' ability to produce goods and
services at the lowest possible cost. In financial markets, operational
efficiency concerns may relate to market structure, monopoly, and
principal agent problems between investors and financial profession-
als. Regulations can promote operational efficiency by encouraging
competition, limiting monopoly pricing power and reducing princi-
pal agent costs. On the other hand, where regulations impose costs
without compensating benefit, these regulations would decrease oper-
ational efficiency.

Portfolio efficiency

An efficient portfolio is one with the least possible variance, holding
expected return constant. We return to portfolio efficiency in Chapter
9

Informational efficiency

? writes ``A market in which prices always `fully reflect' available
information is called `efficient'.'' This definition is quite far from giv-
ing us an empirical test of efficiency. What does it mean for prices to
`fully reflect' information? What does it mean for information to be
`available'? ? offers a more formal definition: The Efficient Market Hypothesis states that

financial markets are informationally
efficient.Definition 5.1 A capital market is said to be efficient with respect to some

information set Ω, if security prices would be unaffected by revealing the
information set Ω to all participants.

The term information set should
be interpreted literally---it is just
a set of pieces of information.
It is a bit abstract, but it is a
helpful way to formalise beliefs.

Moreover, efficiency with respect to an information set implies that it
is impossible to make economic profits by trading on the basis of that
information set. The term economic profit, rather than accounting profit,
is important here, and poses a challenge to empirical tests of efficiency.
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Starting from Definition 5.1, we can further characterize specific
forms of market efficiency conditional upon restrictions over the infor-
mation set Ω:

Definition 5.2

Weak-Form Efficiency: The market is efficient with respect to an infor-
mation set ΩP consisting of the histories of asset prices and returns.1 1 More formally, Ωp = {pt, pt−1, ...},

where pt is the vector of asset prices
at a given point in time t, that is pt =
{p1

t , p2
t , ....} .

Semi-Strong-Form Efficiency: The market is efficient with respect to an
information set Ωpub consisting of all publicly available information.

Strong-Form Efficiency:The market is efficient with respect to an infor-
mation set Ω̄ consisting of all information known to any market partici-
pant.

We can see from Definition 5.2 the challenges in attempting to define
market efficiency. What does it mean for information to be publicly
available?

Strong-Form Efficiency

Semi-Strong-Form Efficiency

Weak-Form Efficiency

Figure 5.1: The heirachy of market
efficiency

Are strong-form efficient markets impossible? The ? Paradox

Consider an asset market that is Strong-Form Efficient with respect
to an information set Ω known to all participants at time 0. Let there
be a cost for information gathering, which could correspond to time
and/or resources.

Trader Terry spends time and resources unearthing a new signal of
information, ωT /∈ Ω. Terry's information set is now ΩT = {Ω ∪ ωT}.
Let's call this time 1.

It must be the case that at time 0, Terry had the expectation that
they would be able to use this additional information ωT to make
an accounting profit. Otherwise, Terry would not have spent the re-
sources and time at time 0 to unearth ωT . In other words, in terms of
Definition 5.1, the market at time 1 is not efficient with respect to ΩT .
As ΩT is known to market participant Terry, Strong-Form Efficiency
cannot hold at time 1.

At time 2, Terry, using the information set ΩT , buys/sells securi-
ties that are under-/overpriced with respect to information set ΩT .
The new equilibrium prices reflect the new information set ΩT . The
new information ωT is not directly revealed to other market partic-
ipants, but under the new equilibrium prices, the revelation of ωT

to all market participants would not necessarily have any effect on
market prices.

The Grossman-Stiglitz Paradox does not directly preclude Weak-
Form or Semi-Strong-Form Efficiency (where publicly available is inter-
preted as available at zero cost). The Paradox does further highlight
the subtleties in our definitions of these efficiency benchmarks.
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Lesson If information gathering is costly and markets are Strong-
Form Efficient, then there is no incentive for traders to gather infor-
mation. This begs the question of how information was revealed and
prices determined in the first place.

The joint hypothesis problem

? says it best:

The Theory [of asset market informational efficiency] only has empirical
content ... within the context of a ... specific model of market equilib-
rium, that is, a model that specifies the nature of market equilibrium
when prices `fully reflect' available information.

We cannot test informational efficiency directly. Informational effi-
ciency on its own does not provide testable predictions.

What we can do, is attempt to derive testable predictions of in-
formational efficiency contingent on a specific model of asset prices,
M : Ω → P. If testable predictions can be derived for model Mi then
we may be able to test the hypothesis

(M = Mi) ∧ (Ω = Ωj)

If MT is the true model, then the joint hypothesis test of (M = MT) ∧
(Ω = Ωj) is equivalent to the hypothesis test of (Ω = Ωj), which is
what we require to test informational efficiency independently. But, in
lieu of the true model, we are stuck with joint hypothesis tests.

Some asset pricing models

In Definition 5.2, we developed three alternative formulations of the
information set Ω to be used to test for market efficiency. In Section 5
we argued that to test efficiency with respect to any information set Ω
we need to combine this information set with an asset pricing model.

The role of the asset pricing model is to generate econometrically
testable predictions from combinations of assumptions including but
not limited to the information set available to agents. In this section,
we briefly describe a handful of potential models that could be used
for this purpose.

Models of efficient markets

The following models were derived from the theory of efficient mar-
kets; their predictions vary dependent on the theoretical assumptions
underlying the three models. We will study each of these models in
later chapters.
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Model 5.1 Martingale Hypothesis.

E[rj] = µj (5.2)

where µj is a constant.

Model 5.2 Fundamental Valuation Relationship.

E[rj] = r0 −
cov(u′(c), rj)

E[u′(c)]
(5.3)

where r0 is the risk free interest rate, c is consumption, u′(c) is the marginal
utility of consumption.

Model 5.3 Capital Asset Pricing Model (CAPM).

E[rj] = r0 + β j(rm − r0), (5.4)

where rm is the return to the market portfolio, and β j =
cov(rj, rm)

var(rm)

Atheoretical models

The following models were developed as adaptations of the Capital
Asset Pricing Model to better fit historical returns data. These models
were not initially derived from the theory of efficient markets, how-
ever this does not necessarily mean that they are models of inefficient
markets; future researchers may develop models of efficient markets
that yield the same predictions.

Model 5.4 Market Model.

E[rj] = r0 + αj + β j(rm − r0), (5.5)

where αj is a constant, β j =
cov(rj, rm)

var(rm)
.

Model 5.5 Factor Models.

E[rj] = r0 +
n

∑
i=1

β ji fi, (5.6)

where the individual random variables fi, the factors, can include additional
financial information relating to firm j (?) as well as macroeconomic indica-
tors including industrial production (?).

Both of the market model and the factor models above are extensions
of the CAPM. These extensions were designed as econometric tools
to help identify the predictors of stock price returns and guide future
theoretical research.
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Testing informational efficiency

Autocorrelation studies

The Martingale Hypothesis (Model 5.1) predicts that the best predictor
of the future returns of a stock is a constant (this constant represents
time preference and risk premia). Importantly, past returns are not
predicted not contain any information about expected future returns.

It follows that findings of autocorrelation in historical stock price
returns can be considered evidence against the joint hypothesis that
(1) markets are weak-form informationally efficient and (2) the mar-
tingale hypothesis is the true model of efficient market returns. This
autocorrelation could take the form of mean-reversion, where poor per-
forming assets tend to outperform the market in subsquent periods, or
momentum, where poor performing assets tend to underperform the
market in subsequent periods.

Early studies of market efficiency, finding both mean-reversion and
momentum in the data, typically interpreted these results as being ev-
idence against financial market efficiency. This conclusion is now seen
as being too strong. The Fundamental Valuation Relationship (Model
5.2) and the CAPM (Model 5.3) both permit autocorrelation of returns
in informationally efficient asset markets under the condition that the
covariance between asset returns and consumption or asset returns
and market returns respectively exhibit autocorrelation. This is an ex-
ample of the importance of the joint hypothesis problem. Our choice
of asset pricing model can determine whether or not our econometric
tests accept or reject market efficiency.

See ?, Ch.2 Sec.4 and for more information about autocorrelation
tests of market informational efficiency. Also, see ? for an important
critique of time series tests of asset market efficiency, and see ? for an
excellent review of the literature on asset pricing anomalies.

Event studies

? provides the first known example of an event study in finance. 2 2 James Clay Dolley. Characteristics and
procedure of common stock split-ups.
Harvard Business Review, pages 316--326,
Apr 1933

Dolley sought to discover whether the price of a stock was likely to
fall or rise following stock-splits. Stock-splits are just redenominations
of stocks, normally undertaken to keep the stock price within a range
that facilitates trading. For example, on 9 June 2014, Apple conducted
a 7-for-1 stock split. Apple's shareholders woke up to see each of their
Apple shares converted into 7 new shares, and the share price fell
from $645.54 before the split to $92.70 when trading opened after the
split.3 3 The new price was not exactly 1/7th of

the initial price, but there was a passage
of time between the close of the day
before the stock split and the opening of
the day following the stock split.

What Dolley was interested in is whether or not it was profitable
on average to purchase (or short sell) stocks following stock-splits. In
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a semi-strong-form efficient market, we would expect stock prices to
adjust instantly to the stock split, and behave otherwise unpredictably
both before and after the split.

More generally, event studies compare the returns of securities
before and after specified events. An event for this purpose could
be an earnings report, a stock split, a merger announcement, or the
removal of a CEO. Typically, these events are thought to be included
in the publically available information set, and event studies are often
used to test semi-strong form market efficiency (See Definition 5.2).

We measure whether or not events give rise to profit opportunities
through the concept of abnormal returns, the excess return to holding
a stock over and above what would be predicted by an asset pricing
model. We use Cumulative Abnormal Returns,

rather than just stock prices, to take
account of stock-splits, dividends, and
changes in expectations of stock prices
drawn from our asset pricing model.

Abnormal returns are defined as follows,

ARt = Rt − E[Rt],

where E[Rt] is generated by an asset pricing model.

The sum of abnormal returns over a period of time is called the
cumulative abnormal return,

CART,T+n =
T+n

∑
t=T+1

ARt.
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If the event does change the underlying value of the stock, then in
an efficient market we would expect cumulative abnormal returns to
jump on impact. If the event is good news, we expect that the CAR
will jump when the news of the event is released. If the event is bad
news, we expect that the CAR will fall when the news of the event is
released.

What we don't expect is predictable trends in the CAR following or
before the announcement. If the CAR continues to rise after positive
events, this would be evidence that the market, on average, underre-
acts to news of these events; Investors could profit by buying stocks
following announcements of similar events. If the CAR falls after pos-
itive events, this would be evidence that the market, on average, over-
reacts to news of these events; Investors could profit by short-selling
stocks following announcements of similar events.

Figure 5.2 presents and example of an event study, taken from ?,
Ch.4. They study the effects of quarterly income announcements for
30 companies over 5 years (600 observations total). These announce-
ments are categorised into ``good news'', ``no news'' and ``bad news''.
Their results suggest that these announcements do carry informa-
tion content, and they do elicit price movements in response. For the
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``good news'' firms, it does appear that there is some anticipation of
the good news implicit in prices before the date of the announcement.

Firms with good news (---), no news ( -- -- ), bad news (· · ·)
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Figure 5.2: Cumulative Abnormal Re-
turns against Days Since Announcement

Aside from over- and underreaction, there are a few other things
we should look out for when conducting event studies. If prices start
to move before the event, this could be evidence of insider trading---it
is possible that some agents are trading on the information before it
is publically announced. If the CAR does not jump at time zero but
rather starts and finishes moving within a day or two of time zero, this
may be evidence of asset market inefficiency, but it also might be the
case that the timestamps in your dataset are incorrect and don't match
up perfectly with trading days.

Silly things that happen

Sometimes, things happen that fly in the face of the efficient market
hypothesis. Consider this example

Google said on Monday it had agreed to buy Nest Labs, which makes
Internet-connected devices like thermostats and smoke alarms, for $3.2
billion in cash. Nest Labs is a private company based in Palo Alto, Calif.

After the deal was announced, investors rushed to buy shares of
Nestor, apparently confused by the company’s ticker symbol, NEST. The
stock continued trading on Wednesday, settling at about 4 cents a share
by midday. ...

Nestor Inc. is a defunct shell of a company that once sold automated
traffic enforcement equipment to state and local governments. Based in
Providence, R.I., the company went into receivership in 2009, and all of
its assets have been sold.
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Its shares, which are not listed on any exchange, [had] been dormant
for years, worth less than a penny each.

New York Times, DealBook4 4 William Alden. A case of mistaken
identity sends a worthless stock
soaring. URL https://dealbook.
nytimes.com/2014/01/15/
a-case-of-mistaken-identity-sends-a-worthless-stock-soaring/.
Accessed 2 August 2018

This example is a clear departure from semi-strong form efficiency.
The acquisition information was publicly available, and was misinter-
preted by investors who acted on the news but purchased the shares
of the wrong company.

https://dealbook.nytimes.com/2014/01/15/a-case-of-mistaken-identity-sends-a-worthless-stock-soaring/
https://dealbook.nytimes.com/2014/01/15/a-case-of-mistaken-identity-sends-a-worthless-stock-soaring/
https://dealbook.nytimes.com/2014/01/15/a-case-of-mistaken-identity-sends-a-worthless-stock-soaring/
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Problems for Chapter 5

Exercise 5.1 Explain why allocative efficiency requires that all projects with
equal risks and payoffs should trade at the same price.

Exercise 5.2 What do examples 5.1 and 5.2 tell us about what types of risk
should offer high returns and what types of risks should not offer high returns
in efficient markets?

Exercise 5.3 Using an appropriate diagram, plot the efficient allocation of
business cycle risk, consistent with Equation 5.1. Your diagram should plot
the economy's production possibility frontier across booms and recessions,
as well as two different agents' indifference curves across boom and recession
consumption.



6
The Martingale Hypothesis

No man can always have adequate reasons for buying or selling stocks
daily — or sufficient knowledge to make his play an intelligent play
Jesse Livermore
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Markov processes and martingales

The martingale hypothesis is the first asset pricing model that we will
consider.

Definition 6.1 A discrete time stochastic process X is said to be Markov
process if

P(Xt = xt|Ωt−1) = P(Xt = xt|Xt−1) where Xt−1 ∈ Ωt−1

(Note that Xt−1 = (Xt−1 = xt−1, ..., X0 = x0)).

Property 6.1 If X is a Markov process, then

P(Xt = xt|Xt−1 = xt−1, ..., X0 = x0) = P(Xt = xt|Xt−1 = xt−1)

Definition 6.2 A discrete time stochastic process X is said to be a martin-
gale if and only if

1. E(|Xs|) < ∞ ∀s, and

2. E(Xt+1|X1, X2, ..., Xt) = Xt, or equivalently,
E(Xt+1 − Xt|X1, X2, ..., Xt) = 0.

Example 6.1 Consider an infinitely lived consumer who enjoys consump-
tion ct with contemporaneous utility function u(ct). The utility function
u(·) is continuous, differentiable and concave with u′(0) = ∞. Future
period utility is discounted according to time preference parameter β. The
consumer's income yt is drawn from distribution Yt which has the support
(0, ∞). The consumer can borrow and save unlimited amounts at the risk free
gross interest rate rate R = 1/β.

The consumer brings wealth wt into period t. Immediately prior to the
realisation of the shock yt, the consumer's problem is

v(wt) = max
c

Et−1

∞

∑
j=0

βju(ct+j),

subject to the budget constraint

wt+1 = R(wt + yt − ct)

and no Ponzi condition, limT→∞ wt ≥ 0.
Notation: The operator Et(·) = E(·|Ωt), where (y1, y2, ..., yt) ∈ Ωt.
Show that u′(c) is a martingale.

Solution 6.1 First, re-write the consumer's objective function using a
recursive form:

v(wt) = max
ct ,wt+1

Et−1[u(ct) + βv(wt+1)]
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Subject to the budget constraint

wt+1 = R(wt + yt − ct)

We can re-write this as a Lagrangian,

v(wt) = max
ct ,wt+1

Et−1[u(ct) + βv(wt+1)− λt(wt+1 − R(wt + yt − ct))]

The first order conditions are

u′(ct)− λtR

βv′(wt+1)− λt

The envelope condition is

v(wt) = Et−1λtR.

Combining these conditions, we get

u′(ct) = βREtu′(ct+1).

Recalling that 1/β = R,

Etu′(ct+1)− u′(ct) = 0.

This satisfies Definition 6.2 part 1. Part 2 can also be easily verified (LTS).

What does Example 6.1 tell us about the evolution of wealth in-
equality?

Definition 6.3 A discrete time stochastic process X is said to be a sub-
martingale if and only if

1. E(|Xs|) < ∞ ∀s, and

2. E(Xt+1|X1, X2, ..., Xt) ≥ Xt.

The martingale hypothesis

Let's start with a simple model M mapping information Ω to price
movements. The martingale hypothesis predicts that innovations in
prices follow a submartingale, with constant expected return µ. This
constant expected return can be interpreted as a discount rate, and
may be adjusted for risk. The motivation for this model is that the
information set Ωt should be incorporated into prices pt. Innovations
in prices pt in excess of the expected return µ should only result from
new information revealed at time t + 1, ωt+1 /∈ Ωt.

Our model M can be described as follows:

E[pt+1|Ωt] = (1 + µ)pt, (6.1)



96

where µ > 1 is a constant. This can be rearranged to yield

µ =
E[pt+1|Ωt]− pt

pt

or alternatively,
E[rt+1|Ωt] = µ. (6.2)

Recall that µ is a constant, and is therefore independent of the el-
ements of Ωt. We can form the unconditional expectation E[rt+1],
which is equal to the conditional expectation E[rt+1|Ωt]:

E[E[rt+1|Ωt]] = E[rt+1] = µ.

It follows that
E[rt+1|rt, rt−1, ...] = µ.

Let ε denote excess returns over and above the mean return µ,

εt = rt − µ.

It follows that expected excess returns are independent of past excess
returns,

E[εt+1|εt, εt−1, ...] = 0. (6.3)

Now that we've described out model, the next step is to derive
predictions of the model that we can test against the data. Proposition
6.1 derives a theoretical restriction on the relationship between past
signals ωt and future returns rt+1.

Proposition 6.1 The martingale hypothesis predicts that future returns
have zero covariance with any signal in the information set, ωt ∈ Ωt, that is

cov(rt+1, ωt) = 0, ∀ωt ∈ Ωt.

Proof. Start from the definition of covariance,

cov(rt+1, ωt) = E[(rt+1 − E[rt+1])(ωt − E[ωt])]

Using the law of iterated expectations, E[E[Y|Z]] = E[Y], we have

E[(rt+1 − E[rt+1])(ωt − E[ωt])] = E[E[(rt+1 − E[rt+1])(ωt − E[ωt])|ωt]]

= E[E[(rt+1 − µ)(ωt − µω)|ωt]]

Note that here, ωt is known, so we can use the linearity of the expecta-
tion operator to re-write the Right hand side as follows:

E[(rt+1 − E[rt+1])(ωt − E[ωt])] = E[(ωt − µω)E[(rt+1 − µ)|ωt]]

= E[(ωt − µω)0|ωt]]

= 0.
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Proposition 6.1 does provide a testable hypothesis. Past information
signals should not affect future returns. Of course, the challenge from
an empirical perspective is designing an experiment where we can
gather many similar signals in order to gain statistical power.

We'll look at two examples of this. In the following section we'll
use earnings announcements as signals in the publicly available in-
formation set Ωpub. This will provide us a test of ([semi-strong-form
efficiency] ∧ [martingale hypothesis]) derived from Proposition 6.1.

First, we'll restrict the signal set to past returns (Corollary 6.1). This
will gain us statistical power in identification but unfortunately it
means we are working with a less powerful hypothesis. Rather than
testing ([semi-strong-form efficiency] ∧ [martingale hypothesis]), re-
stricting Ω to ΩP means that we will be testing ([weak-form efficiency]
∧ [martingale hypothesis])

Corollary 6.1 The martingale hypothesis predicts that returns have zero
autocovariance for all lags, that is

cov(rt, rt−k) = 0 ∀k > 0.

Proof left to student.
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Hedging and the Fundamental Valuation Relationship

Much food is in the tillage of the poor:
but there is that is destroyed for want of judgment.
Proverbs 13:23.

Diversify your millions, you can live off the interest
Make every revenue stream flood, see where it took me.
Xzibit, Everything
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Risk and return

Risk doesn't guarantee high expected returns. Should it?

Hedges Let asset A be a perfect hedge for some risky asset B. This
means that there is some portfolio W = XA A + XBB such that
var(W) = 0. The expected payoff of portfolio W is E[W] = XAE[A] +

XBE[B]. The cost of portfolio W is PW = PAXA + PBXB. The return on
portfolio W is

1 + rW =
W
PW

=
XA A + XBB

PAXA + PBXB

=
XA A

PAXA + PBXB
+

XBB
PAXA + PBXB

=
XAPA

PAXA + PBXB
(1 + rA) +

XBPB
PAXA + PBXB

(1 + rB)

The return on portfolio W is a weighted average of the returns on
assets A and B. It follows that either rA < rW , rB < rW , or rA = rW =

rB. But both assets A and asset B are more risky (ie. higher variance)
than portfolio W. Therefore, it cannot be the case that risky assets as
measured by variance alone always earn higher returns than lower
risk assets.

Insurance Insurance products are financial assets. Insurance premia
purchase rights to future income, conditional upon pre-specified
events such as car accidents, thefts, fires, illness, death, life1... 1 An annuity is insurance against life---

you get a higher payoff the longer you
live.

What is the expected return on insurance products? Probably less
than the expected return on investment products. The insurance com-
pany has similar investment opportunities as an investment firm, but
typically takes less investment risk. The insurance company also has
higher administrative costs than an investment firm (someone needs
to check that you have had a car accident, been robbed, had a fire,
fallen ill, died, or are still alive). What's more, insurance premia are
taxed in this country(!), whereas standard financial investments are
typically subsidised (for example ISAs and pension contributions).

What is the variance of insurance products? High! Hopefully you
don't have a car accident, you don't get robbed, you don't have a fire,
in which case you won't receive anything from your insurance com-
pany (it is more difficult to escape illness death and life, but the insur-
ance payoffs are still uncertain).

So if insurance has a lower expected return than standard invest-
ment products, and carries high risk, why do people buy it?
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The short answer is that insurance products, while themselves risky
and low return, reduce the total risks that you are exposed to. They
provide a hedge for your other risky activities, like driving. Insur-
ance is risky, but it reduces your total risk. You pay for the privilege
through low expected returns.

Equity In Lecture 1, we saw that returns to equity are much more
volatile than returns to bonds and short term deposits. We also saw
that this risk typically comes with reward. Equities have historically
outperformed bonds over long time horizons. Why do shareholders
demand high returns in return for share price risk, when other risks
do not necessarily offer high returns?

Inidividual equities have high risk. Some of this risk, but not all of
this risk, can be managed through diversification. Even with diversi-
fication across individual stocks, the wider stock market provides a
risky return, rising and falling. How should this risk be priced?

Figure 7.1 presents the annual consumption growth and annual re-
turns to equity for the United States. Equity returns are not just risky,
but they move with consumption (ρ = 0.39). When consumption
growth is high, returns to shareholders are high; when consumption
growth is low, returns to shareholders are low. Does this correlation
between consumption and returns to equity offer clues to why share-
holders earn so much higher returns than bondholders and deposi-
tors?

(United States, Quarterly, % change on previous year)
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Figure 7.1: Consumption growth (LHS)
and returns to equity (RHS)
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The Fundamental Valuation Relationship

Consider an investor with wealth w, ready to invest in assets xj. The
future states of the world are indexed by i. The investor's consumption
ci is a random variable, as is the return for each asset, ri

j. How should
the investor allocate their initial wealth across assets xj, and what does
this tell us about risk and return? Remember that asset pricing is about

beliefs, preferences and arbitrage. In the
FVR, E captures the investor's beliefs,
while u′(c) and v′(w) capture the
investors' preferences. Arbitrage-free
pricing is implied as a consequence.

Theorem 7.1 The Fundamental Valuation Relationship: Under the optimal
portfolio allocation, returns satisfy the following condition

1 = E

[
u′(c)
v′(w)

(1 + rj)

]
(7.1)

Notation for Theorem 7.1 (RV indicates random variables)
i Indexes states of the world. πi The probability of state i occurring.
w Initial wealth of the investor. c Final consumption (RV).
v(w) Value function. u(c) Contemporaneous utility function (RV).
v′(w) The marginal value of wealth. u′(c) The marginal utility of consumption (RV).
j Indexes assets. xj Asset j.
pj The price of asset j. zj The payoff of asset j (RV).
rj The return on asset j (RV). λ, µ Lagrange Multipliers (λi is a RV).

Table 7.1: Notation for Theorem 7.1

Proof. The investor's problem is the following

v(w) = max
ci ,xj

E[u(ci)]

Subject to the constraints

ci ≤ ∑
j

zi
jxj ∀i,

and
w ≥ ∑

j
pjxj.

We can re-write this as a Lagrangian,2 2 Exercise: Why is this a Lagrangian and
not a Kuhn-Tucker problem?

L = E

[
u(ci)− λi

(
ci − ∑

j
zi

jxj

)]
+ µ

[
w − ∑

j
pjxj

]
,

where λ1, λ2, ..., λn, µ are Lagrange multipliers. The Lagrange multi-
plier λi can be interpreted as the shadow value of income upon the
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realisation of state i. The Lagrange multiplier µ can be interpreted as
the shadow value of wealth, prior to the realisation of the state i.

Lets re-write this in terms of the probabilities πi of individual states
i,

L = ∑
i

πi

[
u(ci)− λi

(
ci − ∑

j
zi

jxj

)]
+ µ

[
w − ∑

j
pjxj

]
,

The first order necessary conditions of this problem are: Remember, first order conditions tell us
about trade-offs. The marginal benefit of
buying more of asset xj is the increase in
income the investor gets from the payoff
of xj, ∑i [π

iλizi
j]. The marginal cost is

µpj. The Lagrange multipliers scale
these costs and benefits to where they
have the biggest effect on utility.

Lci : 0 = πi[u′(ci)− λi] (7.2)
Lxj : 0 = ∑

i
[πiλizi

j]− µpj (7.3)

Lλi : 0 = πi

(
ci − ∑

j
zi

jxj

)
(7.4)

Lµ : 0 = w − ∑
j

pjxj (7.5)

The envelope condition for w will also be helpful here:

v′(w) = µ. (7.6)

Let's focus on Lxj , which is a statement about the optimal allocation We get envelope conditions by differ-
entiating the investor's problem with
respect to parameters---things the in-
vestor cannot choose, in this case their
initial wealth. Envelope conditions tell
us how much better or worse off the
investor would be in response to an
increase in that parameter.

of wealth into assets xj. We can re-write (7.3) as follows:

E[λzj] = µpj

µ = E

(
λ

zj

pj

)

Note that
zj

pj
is the (stochastic) gross return on asset j, 1 + rj.

µ = E
[
λ(1 + rj)

]
Now we have our optimal portfolio allocation in terms of the Lagrange
multipliers. We can use Equations 7.2 and 7.6 to re-write as follows:

v′(w) = E
[
u′(c)(1 + rj)

]
Now, divide through by v′(w) to complete the proof:

1 = E

[
u′(c)
v′(w)

(1 + rj)

]
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The FVR and marginal rates of substitution and of transformation

We can deconstruct the Fundamental Valuation Relationship to gain
intuition and understanding. For each state i, the marginal rate of
substitution from initial wealth to state i consumption is

MRSci

w =
u′(ci)

v′(w)
.

The marginal rate of transformation from initial wealth to state i con-
sumption for each asset j is

MRTci

w =
1

1 + ri
j
.

We can re-write the fundamental valuation relationship as follows:

1 = E

[
MRSci

w

MRTci
w

]
.

This ties us back to allocative efficiency, the expectation of the quo-
tient of stochastic marginal rates of substitution over marginal rates
of transformation is 1. This is the stochastic analogue of the standard
allocative efficiency requirement, MRS = MRT. As returns and con-
sumption are stochastic, the individual investor cannot equate their
consumption marginal rates of substitution to the marginal rates of
transformation offered by the available assets in each state. Loosely
speaking, optimality or individual level efficiency requires that the in-
vestor minimises expected deviations between consumption marginal
rates of substitution across states and the marginal rates of transfor-
mation across states offered by the available assets.

The FVR and the marginal contribution to expected utility

Another way to deconstruct the FVR is to consider the marginal con-
tribution of each asset to expected utility. First, re-write the Funda-
mental Valuation Relationship (7.1) as follows:

v′(w) = E
[
u′(c)(1 + rj)

]
.

Consider the terms on the right hand side. The final term, (1 + rj),
is the realised return for asset j, a random variable. The first term,
u′(c) is the realised marginal utility of consumption, also a random
variable. The product of these two terms u′(c)(1 + rj), is the realised
contribution to utility per unit increase in holdings of asset j, at the
margin. That is, if we invest a dollar more in asset j, then this will
increase our realised utility by u′(c)(1 + rj), a random variable. The
expected increase in realised utility resulting from a marginal increase
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in holdings of asset j is E
[
u′(c)(1 + rj)

]
. What the FVR tells us is that

marginal contribution to expected utility must be the same across all
assets in our portfolio.

Let
E
[
u′(c)(1 + ri)

]
< E

[
u′(c)(1 + rj)

]
for risky assets i and j. The investor would wish to reduce their hold-
ings of asset i, for a utility loss of E [u′(c)(1 + ri)], and increase their
holdings of asset j, for a utility gain of E

[
u′(c)(1 + rj)

]
. This trade

would leave the investor with increased expected utility.

So what?

So far, we've derived the fundamental valuation relationship, and
shown that it is just a restatement of our standard, ECON 1, allocative
efficiency condition. But what does this tell us about asset pricing?

Corollary 7.1 Let r0 be the return on a risk free asset. The return on a risky
asset in any optimal allocation satisfies the following condition:

r0 = E[rj] +
cov(u′(c), rj)

E[u′(c)]
(7.7)

Proof. Start with Theorem 7.1, which must hold for both the risky
asset j and the risk free asset 0. For the risky asset, we have

1 = E

[
u′(c)
v′(w)

(1 + rj).
]

(7.1)

For the risk free asset, we have

1 = E

[
u′(c)
v′(w)

(1 + r0)

]
= (1 + r0)E

[
u′(c)
v′(w)

]
Combining the two and rearranging we have

(1 + r0)E

[
u′(c)
v′(w)

]
= E

[
u′(c)
v′(w)

(1 + rj)

]
(1 + r0)E

[
u′(c)

]
= E

[
u′(c)(1 + rj)

]
1 + r0 =

E
[
u′(c)(1 + rj)

]
E [u′(c)]

=
E [u′(c)]E

[
1 + rj

]
+ cov

(
u′(c), (1 + rj)

)
E [u′(c)]

=
E [u′(c)]E

[
1 + rj

]
E [u′(c)]

+
cov

(
u′(c), (1 + rj)

)
E [u′(c)]

= E
[
1 + rj

]
+

cov
(
u′(c), (1 + rj)

)
E [u′(c)]
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r0 = E
[
rj
]
+

cov
(
u′(c), (1 + rj)

)
E [u′(c)]

Corollary 7.1 tells us that we can relate expected asset returns to
the covariance of returns and consumption marginal utility. Assets
whose returns negatively covary with consumption marginal utility
(cov(u′(c), rj) < 0) should yield higher expected returns than the risk
free rate, E[rj] > r0.

Recall that marginal utility is decreasing in consumption. So, we
have that assets whose returns positively covary with consumption
(cov(c, rj) > 0) should yield higher expected returns than the risk free
rate, E[rj] > r0.

Summary

The fundamental valuation relationship tells us that assets whose
returns negatively covary with marginal utility should offer high
returns. These are assets whose payoffs are high exactly when we are
already doing well.

Equities have this feature. Stocks have high returns during booms,
when consumption is growing quickly. Stocks offer low returns dur-
ing recessions, when consumption growth is low and when we re-
ally need the money. It is not just the fact that stocks are risky that
motivates their high returns, it is the fact that this risk amplifies the
consumption risks we already face.

On the other hand, insurance products offer low expected returns.
Insurance products have high realised returns exactly when we need
the money, after an accident or when we suffer illness. Insurance,
while itself risky, reduces our total risks.

These general lessons are characterised by the Fundamental Valua-
tion Relationship, and are perhaps intuitive. The value of the Funda-
mental Valuation Relationship in its mathematical form is largely as a
means for econometric analysis. For example, it gives us an economet-
ric framework with which we can link equity risk premia to investors
risk aversion.

At least, this is what you'll be looking at next term. There are lots of
lessons we can learn from the fundamental valuation relationship. It is pow-
erful, and, fundamental. I have a paper that shows, using the fundamental
valuation relationship, how short termism can emerge among firms and banks
in the wake of financial crises. This short termism prolongs and deepens
recessions emerging from financial crises.
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Problems for Chapter 7

Exercise 7.1 Asset xj has an expected return that is less than the risk free
rate (E[rj] < r0). Using the fundamental valuation relationship, what can
you say about asset xj?

Exercise 7.2 Describe the fundamental valuation relationship. Using exam-
ples, explain how the fundamental valuation relationship relates the risk and
return of financial assets.

Exercise 7.3 (This is quite challenging!) Sam enjoys consumption c accord-
ing to utility function u(c), which is strictly increasing, concave and three
times differentiable (u′,−u′′ > 0). Let the expectation of c be denoted by
µc = E[c].

i Take a second order Taylor series of marginal utility (u′(c)) around c =

µc. Show that marginal utility can be written as follows:

u′(c) = u′(µc) + u′′(µc)(c − µc) + u′′′(µc)
(c − µc)2

2
+O((c − µc)

3).

ii Show, using (i) and Corollary 7.1, that you can approximate the funda-
mental valuation relationship as follows for risky asset j and risk free asset
0,

E
[
rj
]
≈ r0 + R(µc)cov

(
log(c), rj

)
,

where R(c) is the Arrow-Pratt measure of relative risk aversion, R(c) =
−cu′′(c)

u′(c)
.

iii Consider the equation derived in part (ii) of this question. Explain how
an econometrician could estimate R(µc) from financial and consumption
data.

iv Find some data and estimate R(µc).





8
Mean variance analysis
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Introduction

One of the main themes in applied economics and finance is a trade-
off between realism and applicability. In Chapter 7, we developed the
Fundamental Valuation Relationship, expressed in Corollary 7.1 as
follows

E[rj] = r0 −
cov(u′(c), rj)

E[u′(c)].

This is a powerful asset pricing model, relying on strong but rea-
sonable assumptions. Specifically, while the FVR does rely on the
Expected Utility Hypothesis, it is general enough to incorporate some
most classical models of utility and can even accommodate some as-
pects of behavioural finance, including Prospect Theory (?).

But this generality and realism comes at a cost when the Funda-
mental Valuation Relationship is applied in practise. Importantly,
econometricians and finance practitioners do not observe the utility
function u(c). We don't always have the data that we need to estimate
and apply the Fundamental Valuation Relationship in its general form,
but if we make additional restricting assumptions, we can develop
asset pricing models that are much easier to use in empirical and prac-
tical applications. The most important and commonly used simplifica-
tion is mean-variance utility. This Chapter presents an introduction to
mean-variance utility analysis, outlining some of the main drawbacks
of this approach to financial modelling before considering some of the
applications that make mean-variance utility such a powerful tool.

We start by defining what we mean by mean-variance utility:

Definition 8.1 A utility function u(w) is described as a mean-variance
utility function if and only if

E[u(w)] = v(µw, σ2
w)

for some function v. That is, if expected utility can be defined strictly in
terms of expected consumption and the variance of consumption.

Example 8.1 The utility function u(w) = µw − ρσ2
w, with ρ a constant, is

a mean-variance utility function that is linear in both the expectation and the
variance of consumption.

Example 8.2 Let u(w) be a utility function. The second order Taylor exan-
sion of u(w) around µw is

u(w) ≈ u(µw) + (w − µw)u′(µw) +
(w − µw)2

2
u′′(µw),
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which is a mean-variance utility function. Now take the expectation of u(w),

E[u(w)] ≈ E

[
u(µw) + (w − µw)u′(µw) +

(w − µw)2

2
u′′(µw)

]
≈ E[u(µw)] + E[(w − µw)u′(µw)] + E

[
(w − µw)2

2
u′′(µw)

]
≈ u(µw) + E[w − µw]u′(µw) +

E[(w − µw)2]

2
u′′(µw)

≈ u(µw) +
σ2

w
2

u′′(µw)

Example 8.2 shows that for any single argument utility function,
expected utility can be approximated to second order by a mean-
variance utility function.

Some drawbacks of using mean-variance utility

State-contingent preferences

Mean-variance utility functions are single argument.1 Utility depends 1 That is, they take the form u(c), rather
than u(c, x1, x2, ...).on realised wealth alone, and a given level of wealth provides a given

level of utility regardless of the state. For example, the utility de-
rived from a given level of wealth may be dependent on employment
circumstances and hours worked---this link between employment
outcomes and preferences over wealth is standard in modern macroe-
conomic models.

But we can also think of longer term risks that may affect the utility
we derive from wealth. Climate change is an example, innovation in
health care (or conversely antibiotic resistance) may be other examples
of risks that directly and indirectly affect the utility we derive from
wealth.

Higher moments

Mean-variance utility functions summarise risk by variance alone.
Consider Figure 8.1, which plots normal and lognormal distributions
sharing identical means and variances. These two distributions are
clearly very different, and we would expect that two assets whose
payoffs were represented by these two distributions would likely
have different prices. The normal distribution has zero skewness and
zero kurtosis. The lognormal distribution has positive skewness and
kurtosis. The normal distribution permits negative payoffs, while the
lognormal distribution does not.
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Figure 8.1: Probability density functions
for distributions with equal mean and
variance (normal, and lognormal).

The mean-variance utility paradox

Proposition 8.1 For every continuous mean variance utility function
u(µ, σ) satisfying risk aversion, there exist two assets A and B where A state
dominates B, but B is preferred over A.

A proof of this result is beyond the scope of this Module, but the
following example helps illustrate the paradox.2 2 A proof is provided by ?, Th. 2.30.

Example 8.3 Let B be an asset that returns 0 in all states, and A be an asset
that returns 10 with probability 0.01, and 0 otherwise. The investor has a

mean-variance criterion v = µ − 1
2

σ2. The investor prefers asset B over asset
A.

µB = 0, σ2
B = 0

µA = 0.99 × 0 + 0.01 × 10 = 0.1

σ2
A = 0.99 × (0 − 0.1)2 + 0.01 × (10 − 0.1)2 = 0.99

vB = 0 − 1
2
× 0 = 0

vA = 0.1 − 1
2
× 0.99 = −0.395

vB > vA, therefore the investor prefers asset B over asset A. This is
a paradox, because asset A always provides at least as high a payoff as
asset B, and sometimes provides a strictly higher payoff.

Applications of mean-variance utility

The costs of using mean-variance utility, described in the previous
section, are high. But as we'll see in the rest of this chapter, there are
important applications of the mean-variance approach that justify its
use in applications in asset pricing.
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Indifference curves

Let u(w) = µw − ρσ2
w. To plot indifference curves, hold u constant at

ū, µw = ū + ρσ2
w. We can plot these indifference curves in the (σw, µw)

space, for given utility levels ū, as in Figure 8.2. In this space, indiffer-
ence curves are upward sloping and convex, with utility increasing in
increases in µw and decreases in σw.

0 0.5 1 1.5 2
0

2

4

6

8

10

12

σw

µ
w

Figure 8.2: Indifference curves (ū =
µw − ρσ2

w, ū = 1, 4, 7, ρ = 3)

Varying risk aversion

Lets consider what happens when we vary ρ, the parameter that gov-
erns aversion to risk for this form of preferences. Figure 8.3 plots three
different indifference curves for investors with varying risk aversion.
For investors who are less tolerant to risk (higher ρ), the indifference
curves become steeper than for those investors who are more tolerant
to risk.

Portfolio frontiers

We now have indifference curves in the volatility-mean return space
(the (σw, µw) space). The next step is to consider the attainable port-
folio frontier. This portfolio frontier corresponds to the production
possiblity frontiers that you'll be familiar with from other economics
courses. With some combination of assets, what are the risk, return
combinations (the (σw, µw) combinations) that we can construct?

Here, we need a bit of structure. We'll assume that we start with
wealth w0 = 1, the assets y and z each have price 1, returns µy =
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Figure 8.3: Indifference curves (ū =
µw − ρσ2

w, ū = 1, ρ = 1, 3, 5)

3, µz = 7, volatilities σy = 1, σz = 1.5, covariance σyz = 0.4.
Let xy be the units of asset y purchased and xz be the units of asset

z purchased. To construct the portfolio frontier, recall that

µw = xyµy + xzµz.

We also know that

σ2
w = x2

yσ2
y + x2

zσ2
z + 2xyxzσyz,

but we need to convert this into a standard deviation,

σw =
√

x2
yσ2

y + x2
zσ2

z + 2xyxzσyz.

The portfolios we can construct with this information are presented
in Figure 8.4. The labels y and z mark the points where the portfolio
holds only the asset y,z respectively. Interior points on the schedule
indicate portfolios that hold both assets. The curvature of the schedule
indicates the importance of diversification for reducing the volatility
of portfolio returns.

Varying covariance

We can get some intuition about the shape of the portfolio frontier by
varying the covariance between the two assets. Holding the rest of the
parameters from Figure 8.4 constant, Figure 8.5 varies the covariance
between the two assets. When σy,z = −σzσy (or ρy,z = −1) there exists
a portfolio with zero risk.
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Figure 8.4: Portfolio frontier
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Figure 8.5: Portfolio frontiers (σy,z =
−σzσy, 0, σzσy)

Optimal portfolios

Now, let's solve for our optimal portfolios. These optimal portfolios
will be such that the portfolio frontier and the investor's indifference
curves share tangencies.

Example 8.4 Let z be a risky asset with price pz, expected payoff µz and
standard deviation σz. y is also a risky asset, with price py expected payoff µy

and standard deviation σy. Both assets have price 1. Sam is an investor with



116

initial wealth of w0 and can allocate this wealth across assets x and y. Sam
values expected utility according to u(w) = µw − ρσ2

w.
How should Sam's initial wealth be allocated across the two assets?

Solution in the z, y space

Let xz be the units of asset z purchased, the units of asset y purchased
is xy.

It follows that,
µw = xzµz + xyµy

σ2
w = x2

zσ2
z + x2

yσ2
y + 2xzxyσz,y

We can re-write Sam's expected utility as follows:

u(w) = xzµz + xyµy − ρ[x2
zσ2

z + x2
yσ2

y + 2xzxyσz,y]

To find the optimal portfolio allocation, we maximise u(w) with re-
spect to xz, xy, subject to the constraint

xz pz + xy py = w0. (8.1)

Our Lagrangian is

L = xzµz + xyµy − ρ[x2
zσ2

z + x2
yσ2

y + 2xzxyσz,y] + λ[w0 − xz pz − xy py].

The first order necessary conditions are

L
dxz

: 0 = µz − ρ
[
2xzσ2

z + 2xyσz,y

]
− λpz.

L
dxy

: 0 = µy − ρ
[
2xyσ2

y + 2xzσz,y

]
− λpy.

Let's take a closer look at these first order conditions. Without loss of
generality, the first two terms, µz − ρ

[
2xzσ2

z + 2xyσz,y
]
, capture the

marginal benefit of holding an additional unit of the asset z. 3 This 3 ``Without loss of generality", or
WOLOG, means that we can replace
all the z's with y's and the following
statements still hold.

marginal benefit captures both the increase in expected payoff from
additional units of asset z, less the cost of additional risk accruing
from holding more units of asset z. The third term, −λpz, captures
the marginal cost, in terms of resources, of purchasing an additional
unit of asset z. This comprises the price of asset z, pz, as well as the
Lagrange multiplier λ, the shadow value of wealth, which summarises
the opportunity cost of wealth in this environment.

We can re-write these first order conditions eliminating λ as follows

µz − ρ
[
2xzσ2

z + 2xyσz,y
]

µy − ρ
[
2xyσ2

y + 2xzσz,y

] =
pz

py
.
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Hopefully this looks familiar, the left hand side is the marginal rate
of substitution between assets y and z. The right hand side is the
marginal rate of transformation between assets y and z.

We can solve for xz, xy as follows. First, rearrange the above condi-
tion such that it is linear in xy, xz:

py

(
µz − ρ

[
2xzσ2

z + 2xyσz,y

])
= pz

(
µy − ρ

[
2xyσ2

y + 2xzσz,y

])
.

Now, recall the initial wealth constraint (8.1),

w0 = xz pz + xy py.

We have two conditions that are linear in two unknowns, and can
solve. (Left to student)

Solution in the µw, σw space

This is a bit more tricky, but perhaps more intuitive. What we want
to do is re-cast our problem into expected returns and risk, away
from explicit allocation between the two assets x and y. Of course,
we should get the same answer. With this method, we should be able
to construct efficient frontiers in our µw, σw space, and equate tangents
with our indifference curves in Figure 8.2.

From our utility function, we can obtain a marginal rate of substitu-
tion between risk and reward:

u(w) = µw − ρσ2
w

uµw = 1, uσw = −2ρσw

MRSσw ,µw =
uµw

uσw

= − 1
2ρσw

This is quite straightforward, at the margin we'd be willing to accept
2ρσw units of risk for an additional unit of expected wealth. When ρ is
larger, or σw is larger, our tolerance for further risk falls, and we need
more compensation in terms of expected consumption to compensate
for further increases in risk.

So far so nice and intuitive! But now we need a marginal rate of
transformation from risk to reward.

Let xz be the units of asset z purchased, the units of asset y pur-
chased is xy. The expected payoff of portfolio is

µw = xzµz + xyµy (8.2)

The variance of the portfolio is

σ2
w = x2

zσ2
z + x2

yσ2
y + 2xzxyσz,y (8.3)
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The budget constraint is

xz pz + xy py = w0. (8.4)

What we want, is dµw

dσw
, holding initial wealth w0 constant and varying

xz, xy.
There are a few ways to do this, including to directly eliminate

xz, xy from the above conditions and then take the derivative dµw

dσw
directly. In my view, that's a bit messy, and prone to error. It is hard to
keep intuition when you have long lines of algebra. So I suggest using
total derivatives and the chain rule liberally.

Left to student! (Don't spend much time on this, it is useful to think
about different ways to solve the same problem, that highlight differ-
ent aspects of the problem. But, from here on in the algebra is pretty
complicated and not hugely helpful to understanding).

Graphical representation of optimal portfolio allocation

Figure 8.6 provides a graphical representation of optimal portfolio
allocation, retaining the same parameterisation from Figures 8.2 and
8.4. The optimal allocation is where the tangent of the indifference
curve I meets the tangent of the portfolio frontier yz. This is where the
marginal rate of substitution from risk to return equates the marginal
rate of transformation from risk to return.
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Figure 8.6: Optimal portfolio allocation
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Mean-variance utility and the Fundamental Valuation Relationship

Consider an agent with all of their wealth invested in portfolio P. That
is, their final consumption is given by

c = (1 + rP)w,

where w is initial wealth and (1 + rP) is the gross return on the agent's
portfolio. The agent optimises their portfolio allocation decisions to
maximise a mean variance criterion

u(c) = µc − ρσ2
c .

Proposition 8.2 The risk premium of any individual asset j held by the
agent can be expressed as follows:

µj − r0

σP,j/σP
=

µP − r0

σP
(8.5)

Proof. Marginal utility can be expressed as

u′(c) = 1 − 2ρc.

In terms of portfolio returns, we have

u′(c) = 1 − 2ρ(1 + rP)w. (8.6)

By Corollary 7.1, the portfolio optimality condition for asset j can be
described as follows

µj = r0 −
cov(u′(c), rj)

E[u′(c)]

= r0 −
cov(1 − 2ρ(1 + rP)w, rj)

E[u′(c)]
by (8.6)

= r0 −
−2ρwcov(rP, rj)

E[u′(c)]

= r0 +
2ρwcov(rP, rj)

E[u′(c)]

µj − r0 =
2ρw

E[u′(c)]
cov(rP, rj) (8.7)

The risk premium , µj − r0, is proportional to the covariance of the
asset's returns with the portfolio, cov(rP, rj).

Equation 8.7 holds for all assets, including portfolio P. So we have
(using σj,P = cov(rj, rP)),

µj − r0 =
2ρw

E[u′(c)]
σP,j (8.8)

µP − r0 =
2ρw

E[u′(c)]
σ2

P (8.9)



120

We wish to cancel out the term 2ρw
E[u′(c)]

and find an expression sim-

ply in terms of risk premia, covariance and variance terms. One option
is to divide 8.8 by 8.9:

µj − r0

µP − r0
=

σP,j

σ2
P

The traditional way to write down this relationship is to express the
risk premia of asset j relative to the risk premia of the portfolio P.
Multiplying both sides by (µP − r0)

σP
σP,j

we have

µj − r0

σP,j/σP
=

µP − r0

σP

The Sharpe Ratio

Definition 8.2 The Sharpe ratio of asset j is defined as

sj =
µj − r0

σj

Corollary 8.1 Assume the mean-variance FVR holds for individual asset
j and portfolio P (Proposition 8.2). The Sharpe ratio of asset j is less than or
equal to that of portfolio P.

Proof. Start with the FVR relationship,

µj − r0

σP,j/σP
=

µP − r0

σP
.

The fraction σP,j/σP is equal to corr(P, j)σj by Definition 1.6. So, we
can write

µj − r0

corr(P, j)σj
=

µP − r0

σP
.

Multiplying both sides by corr(P, j) we have

µj − r0

σj
= corr(P, j)

µP − r0

σP
.

The correlation corr(P, j) is within the range [0,1], therefore we have

µj − r0

σj
≤ µP − r0

σP
.

The Sharpe ratio provides us with a simple and powerful measure
of risk and reward that we will come back to in future lectures and
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problem sets. The fact that simple relationships like Proposition 8.2
and Corollary 1.6 are testament to the power of the Fundamental Val-
uation Relationship, which provides researchers with a wide range of
predictions to help understand asset pricing and to help test hypothe-
ses.

Within any optimal portfolio, Corollary 8.1 states that the Sharpe
ratio for any individual asset is less than the Sharpe ratio for the port-
folio as a whole. It may still be worthwhile to hold asset j regardless;
including asset j in our portfolio may reduce the total risk of our port-
folio (that is, it may lower sP) even if asset j itself has high variance.
This hints at the value of diversification that we will return to in the
next chapter.

Application: Business Cycle Welfare Costs

In a provocative article, ? sought to calculate the welfare costs of busi-
ness cycles and compare these costs to the benefits of higher long run
growth. Lucas showed, using the following methodology, that the
welfare costs of business cycles were quite modest, similar to very
small increases in the level of output. Further, Lucas argued, these
modest gains provided an unobtainable upper bound on the possible
welfare gains from further stabilisation---it is unlikely that business
cycles could or should ever be completely eliminated. Lucas suggested
that perhaps, macroeconomists need to refocus their priorities away
from business cycle stabilisation and toward growth.

Let u(c) =
c1−γ

1 − γ
. The parameter γ corresponds to Arrow-Pratt

Relative Risk Aversion. This type of utility function is referred to as
constant relative risk aversion.

Using Example 8.2, we can approximate E[u(c)] by the following

mean-variance utility function, v(µc, σ2
c ) = u(µc) +

σ2
c

2
u′′(µc). In this

case, we have
u′(c) = c−γ,

u′′(c) = −γc−γ−1 = −γ
u′(c)

c
.

We can re-write v(µc, σ2
c ) as follows:

v(µc, σ2
c ) = u(µc) +

σ2
c

2
u′′(µc)

= u(µc) +
σ2

c
2

(
−γu′(µc)

µc

)
= u(µc)−

γ

2

(
u′(µc)

µc

)
σ2

c
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Let ĉ be the level of consumption that provides the same utility as
µc, σ2

c when risk is zero. In other words, v(ĉ, 0) = v(µc, σ2
c ). ĉ is the

certainty equivalent consumption bundle. The ratio ĉ − µc

µc
is the

consumption equivalent cost of business cycles, the proportion of
expected consumption that would be sacrificed by households in
order to eliminate business cycle risk.

0 = v(ĉ, 0)− v(µc, σ2
c )

= u(ĉ)− u(µc) +
γ

2

(
u′(µc)

µc

)
σ2

c

Take a first order Taylor series approximation of u(ĉ)− u(µc) around
µc:

u(ĉ)− u(µc) = (ĉ − µc)u′(µc)

Now, substitute in this approximation:

(ĉ − µc)u′(µc) = −γ

2

(
u′(µc)

µc

)
σ2

c

Marginal utility u′(µc) appears on both sides. Also, we want to solve

for ĉ − µc

µc
. So, divide both sides by u′(µc)/µc:

ĉ − µc

µc
= −γ

2

(
σc

µc

)2

For the US, we can obtain the following values:
(

σc

µc

)2
= 0.001538.

Standard values of γ range from 0.5 to 4, where economists tend
to find lower values in experimental settings, and larger values in
macroeconomic settings.

Assuming that γ = 0.5, we have ĉ − µc

µc
= −0.038%. Households

would be willing to give up 0.038% of their average consumption to
eliminate business cycles. Average consumption in the US is about
usd $39 000 per year, so this corresponds to usd $15 per year. If on the
other hand we assumed γ = 4, households would be willing to pay
usd $120 per year per person to eliminate business cycle fluctuations.

These calculations suggest that the elimination of business cycles
could at best result in a welfare gain equivalent to a permanent in-
crease in GDP of between 0.038% (γ = 0.5) and 0.31% (γ = 4). This is
very modest in terms of long run economic growth.
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Problems for Chapter 8

Exercise 8.1 Do you think economists should adjust their priorities away
from macroeconomic stabilisation and towards growth?

Exercise 8.2 What, if anything, does the Business Cycle Welfare Costs
Application in Section 8 tell you about the usefulness of mean-variance anal-
ysis? Does this application highlight any of the weaknesses of mean-variance
analysis? (for example, but not limited to, those described in Section 8)
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Coding exercise for Chapter 8

Coding Exercise 8.1 By the end of this exercise, you should have

1. estimated the moments of the historical monthly returns of the Total Re-
turn Russell 3000 Index (you are free to edit the index and the periodicity),

2. compared the distribution of historical returns to a normal distribution
with the same mean and variance,

3. calculated the risk free equivalent rate that would offer an investor the
same utility as the stock market,

4. and compared this risk free equivalent rate with one derived from mean-
variance approximated utility, as well as higher order approximations that
take into account skewness and kurtosis.

#-------------------------------------------------------------------------------
# Preamble
#-------------------------------------------------------------------------------

# Load packages

using FredData
using UnicodePlots
using DataArrays
using DataFrames
using Distributions

# Assign Fred API key to access https://fred.stlouisfed.org

f = Fred("691f7fe81e035ddd29be13594f6025d6")

# If you plan to use FRED a lot, get your own API key
# https://research.stlouisfed.org/docs/api/fred/

#-------------------------------------------------------------------------------
# Download and manipulate data
#-------------------------------------------------------------------------------

RussellTR = DataFrame()
try

RussellTR = get_data(f,"RU3000TR").df[:,3:4] # Download data
writetable("RussellTR.csv",RussellTR)

catch
RussellTR = readtable("RussellTR.csv")
df = Dates.DateFormat("yyyy-mm-dd")
RussellTR[:date] = Date(RussellTR[:date],df)

end

RussellTR = RussellTR[RussellTR[:value].>0,:] # Remove NaN values
RussellTR[:RM] = 0.0 # Initialise return column

# Generate monthly returns series
for i in 1:size(RussellTR)[1]

try
RussellTR[:RM][i] = (

log(RussellTR[:value][i])
- log(RussellTR[(RussellTR[:date].==

RussellTR[:date][i] - Dates.Month(1)),:][:value][1])
)

catch
RussellTR[:RM][i] = NA # Exception handling

end
end

Returns = RussellTR[~isna(RussellTR[:RM]),:] # Remove NA return vales
lineplot(Returns[:date],Returns[:RM]) # Plot returns by date
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# Moments

mur = sum(Returns[:RM])/(size(Returns)[1]); # Mean returns
sdr = sqrt(sum((Returns[:RM]-mur).^2)/(size(Returns)[1])); # Standard deviation
skr = sum(((Returns[:RM]-mur)/sdr).^3)/(size(Returns)[1]); # Normalised skewness
kur = sum(((Returns[:RM]-mur)/sdr).^4)/(size(Returns)[1]); # Normalised kurtosis

# Compare with normal distribution

buckets = 100;
grid = collect(linspace(minimum(Returns[:RM]),

maximum(Returns[:RM]),
buckets));

ndraws = 10000000;
normal_draws = mur + sdr*randn(ndraws);

dist_ret = zeros(size(grid)[1]-1);
dist_norm = zeros(size(grid)[1]-1);
for i in 1:size(dist_ret)[1]

dist_ret[i] = (size(Returns[((Returns[:RM].>=grid[i]) &
(Returns[:RM] .< grid[i+1])),:])[1]

/size(Returns)[1]
)

dist_norm[i] = (size(normal_draws[((normal_draws.>=grid[i]) &
(normal_draws.< grid[i+1]))])[1]

/size(normal_draws)[1]
)

end

# Plot the distributions

plotreturns = lineplot(grid[1:size(grid)[1]-1],dist_ret,
title="Distribution of returns vs normal distribution");

lineplot!(plotreturns,grid[1:size(grid)[1]-1],dist_norm);

println(plotreturns)

# Zoom in on the left hand tail

plotlefttail = lineplot(grid[1:size(grid)[1]-1], dist_ret,
xlim=[grid[1]; grid[convert(Int,round(0.25*buckets,0))]],
ylim=[0;2*dist_ret[convert(Int,round(0.25*buckets,0))]],
title="Left tail of returns vs normal distribution");

lineplot!(plotlefttail,grid[1:size(grid)[1]-1],dist_norm);

println(plotlefttail)

#-------------------------------------------------------------------------------
# Utility calculations
#-------------------------------------------------------------------------------

# Functions

gamma = 1.5; # CRRA coefficient
u(x) = x.^(1-gamma)./(1-gamma); # CRRA utility function
u1(x) = x.^(-gamma); # Marginal utility, u'(x)
u2(x) = -gamma.*x.^(-gamma-1); # u''(x)
u3(x) = gamma*(1+gamma).*x.^(-gamma-2); # u'''(x)
u4(x) = -gamma*(1+gamma)*(2+gamma).*x.^(-gamma-3); # u''''(x)
uInv(u) = ((1-gamma)*u)^(1/(1-gamma)); # Inverse utility

# Expected utility

EU = sum(u(1+Returns[:RM]))/(size(Returns)[1]); # True expected utility
EU1 = u(1+mur); # First order approximation
EU2 = EU1 + (sdr^2/2)*u2(1+mur); # Second order approximation
EU3 = EU2 + (sdr^3*skr/6)*u3(1+mur); # Third order approximation
EU4 = EU3 + (sdr^4*kur/24)*u4(1+mur); # Fourth order approximation

# Consumption equivalent
# What is the risk free consumption bundle that offers the same
# expected utility as the risky consumption bundle?

CE = uInv(EU);
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CE1 = uInv(EU1);
CE2 = uInv(EU2);
CE3 = uInv(EU3);
CE4 = uInv(EU4);

# Risk free return equivalent
# What is the risk free rate that offers the same expected Utility
# as the risky return?

RE = CE - 1;
RE1 = CE1 - 1;
RE2 = CE2 - 1;
RE3 = CE3 - 1;
RE4 = CE4 - 1;

# How good are the low order approximations?

plotrf = lineplot([1;2;3;4;5],[RE1;RE2;RE3;RE4;RE],
title="Risk free equivalent return by order of approximation")

println(plotrf)



9
Efficient Portfolios

It's like a crapshoot in Las Vegas, except in Las Vegas the odds are with
the house. As for the market, the odds are with you, because on average
over the long run, the market has paid off.
Harry Markowitz

Fresh out the gate again, time to raise the stakes again
Fatten my plate again, y'all cats know we always play to win
Gang Starr, Full Clip

Floss a little; invest up in a mutual fund.
Busta Rhymes, Dangerous



128

Definition of efficient portfolios

Definition 9.1 The return on risky asset i is denoted by ri ∈ {r1, r2, r3, ..., rn}.
A portfolio p is specified by portfolio weights {w1, w2, w3, ..., wn}, where
wi is the proportional allocation of the portfolio in asset i. Portfolio p is
an efficient portfolio if and only if for all other portfolios p′ 6= p, either
E[rp] > E[rp′ ] or σ2

p < σ2
p′ .

Consider Definition 9.1. Any portfolio that is not an efficient portfolio
cannot be the optimal portfolio for an investor with mean-variance
utility. All investors with a mean-variance objective must hold an
efficient portfolio as their optimal portfolio. For an individual investor,
their choice of efficient portfolio is dependent on their risk tolerance.

The two asset case

Example 9.1 Consider assets z and y from the previous lecture. Figure 9.1
marks the portfolio frontier, the schedule zy. The region az marks the efficient
portfolios, the upward sloping section of the portfolio frontier. The portfolios
along the region ya are inefficient. For every portfolio p′ in ya, there exists a
portfolio p in az such that E[rp] > E[rp′ ] and σ2

p ≤ σ2
p′ .

The section (az) marks the efficient portfolios.
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Figure 9.1: Portfolio frontier with two
assets, z and y.

The Markowitz Bullet

In this section we wish to extend the above analysis to a market with
many assets. The key question is the following: to what extent can
diversification reduce the risk of a portfolio of assets?

First, we need a couple of new probability results.
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Portfolio returns with many assets

The return on risky asset i is denoted by ri ∈ {r1, r2, r3, ..., rn}. A
portfolio p is specified by portfolio weights {w1, w2, w3, ..., wn}, where
wi is the proportional allocation of the portfolio in asset i. Note that
∑n

i=1 wi = 1.

Property 9.1 The return on portfolio p is

rp = w1r1 + w2r2 + w3r3 + ... + wnrn

rp =
n

∑
i=1

wiri

Property 9.2 The variance of the return on portfolio p is

var(rp) =
n

∑
i=1

n

∑
j=1

wiwjcov(ri, rj)

Proof. By definition, we have

var(rp) = E[(rp − µp)
2]

where µp = E[rp]. Using property 9.1 we have

var(rp) = E

( n

∑
j=1

wj(rj − µj)

)2


= E

[
w1(r1 − µ1)

(
n

∑
j=1

wj(rj − µj)

)
+ ... + wn(rn − µn)

(
n

∑
j=1

wj(rj − µj)

)]

= E

[(
n

∑
j=1

w1wj(r1 − µ1)(rj − µj)

)
+ ... +

(
n

∑
j=1

wnwj(rn − µn)(rj − µj)

)]

=
n

∑
j=1

w1wjE[(r1 − µ1)(rj − µj)] + ... +
n

∑
j=1

wnwjE[(rn − µn)(rj − µj)]

=
n

∑
j=1

w1wjcov(r1, rj) + ... +
n

∑
j=1

wnwjcov(rn, rj)

=
n

∑
i=1

n

∑
j=1

wiwjcov(ri, rj)

Three asset portfolios

What happens when we have more than two assets? Figure 9.2 con-
structs a sample of three asset portfolios, indicated by black dotted
lines. The two asset portfolios are indicated by the black solid lines.
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Here, rather than having a schedule of possible volatility-return com-
binations, we have an area of possible volatility-return combinations.
Of this area, the left boundary traces out the Markowitz Bullet, the set
of portfolios with minimum variance for their given mean return. The
upward sloping part of the Markowitz Bullet traces the schedule of
efficient portfolios.

Solid lines indicate two asset portfolios.
Dotted lines indicate a sample of three asset portfolios.
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Figure 9.2: Feasible portfolios with three
assets, x, y and z.

Figure 9.3 represents the Markowitz bullet for a market with many
risky assets. The Markowitz bullet represents the portfolio fron-
tier, the lowest risk portfolio for any given level of expected returns.
The upward sloping section of the Markowitz Bullet, in blue, is the
schedule of efficient portfolios. The downward sloping section of the
Markowitz Bullet, dotted in black, is the schedule of inefficient portfo-
lios that lie on the frontier. Note that there are many more feasible but
inefficient portfolios that lie on the right hand side of the Markowitz
Bullet. The area to the left of the Markowitz bullet is infeasible---there
is no combination of risky assets that can produce a portfolio to the
left of the Markowitz Bullet by construction.

Diversification and its limits

We've seen in the two asset case how diversified portfolios can have
lower risk than either of the underlying assets. If we have many assets,
can we completely eliminate risk through diversification?

Proposition 9.1 Consider a risky market with n securities, indexed by i.
All assets xi have the same expected return µi = µ and their returns have
the same variance σ2

i = σ2. All assets are uncorrelated, σij = 0, ∀i 6= j.
Let p be a portfolio that is equal weighted in all assets xi. The variance of the
returns on portfolio p tend to zero in the limit as n approaches infinity.
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Blue section indicates the efficient portfolios.
The dotted black section indicates the inefficient portfolios on the

frontier.
Individual assets marked in red.

efficient portfolios

assets

inefficient portfolios

infeasible portfolios

σw

µ
w

Figure 9.3: The Markowitz Bullet with
many assets

Proof. Portfolio p holds equal shares of each asset. There are n assets
in portfolio p, therefore the portfolio weight for any asset xi is wi =

1/n. By Property 9.2, the variance of the returns of portfolio p are

var(rp) =
n

∑
i=1

n

∑
j=1

wiwjcov(ri, rj)

=
n

∑
i=1

n

∑
j=1

1
n2 cov(ri, rj).

Recall that cov(ri, ri) = var(ri) and that all assets are uncorrelated (if
i 6= j, then cov(ri, rj) = 0).

var(rp) =
n

∑
i=1

1
n2 var(ri) +

n

∑
i=1

∑
j 6=i

1
n2 cov(ri, rj)

=
n

∑
i=1

1
n2 σ2

i + 0

= n
1
n2 σ2

=
1
n

σ2.

This expression is always strictly positive and is decreasing in the
number of assets in the portfolio, n. The question asks us to consider
what happens as the number of assets n approaches infinity. To do
this we need to take the mathematical limit of the above expression as
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n → ∞:

lim
n→∞

var(rp) = lim
n→∞

1
n

σ2

= 0.

Proposition 9.1 shows that when a market consists of many uncor-
related risky assets, we can construct diversified portfolios with very
little risk. It might be helpful to think about what the Markowitz Bul-
let looks like for a market with infinitely many uncorrelated assets as
in Proposition 9.1. We've shown that it is possible in such a market to
construct a riskless asset as a portfolio of risky assets. This means that
the Markoqitz Bullet for this market touches the vertical axis.

In practise, individual stocks are typically positively correlated.
Shocks that affect the value of Apple shares also affect the value of
Microsoft shares. During recessions most stocks fall in value and dur-
ing booms most stocks rise. Proposition 9.1 relied on all assets being
uncorrelated, but this simplifying assumption is too strong for our
purposes.. Proposition 9.2 considers a market with many correlated
assets. Here there are limits to diversification. As the number of assets
increases, portfolio risk converges to a strictly positive constant.

Proposition 9.2 Consider a risky market with n securities, indexed by i.
All assets xi have the same expected return µi = µ and their returns have
the same variance σ2

i = σ2. All assets are correlated with σij = ρσiσj =

ρσ2, ∀i 6= j, where ρ > 0. Let p be a portfolio that is equal weighted in all
assets xi. The variance of the returns on portfolio p tend to ρσ2 in the limit as
n approaches infinity.

Proof. Portfolio p holds equal shares of each asset. Therefore the
portfolio weight in asset xi is wi = 1/n. By Property 9.2, the variance
of the returns of portfolio p are

var(rp) =
n

∑
i=1

n

∑
j=1

wiwjcov(ri, rj)

=
n

∑
i=1

n

∑
j=1

1
n2 cov(ri, rj)
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Recall that cov(ri, rj) = ρri ,rj σiσj (by Definition 1.6).

var(rp) =
n

∑
i=1

1
n2 var(ri) +

n

∑
i=1

∑
j 6=i

1
n2 ρri ,rj σiσj

=
n

∑
i=1

1
n2 σ2 +

n

∑
i=1

∑
j 6=i

1
n2 ρσ2

= n
1
n2 σ2 + n(n − 1)

1
n2 ρσ2

=
1
n

σ2 +
n − 1

n
ρσ2

Again, we want to think about what happens when the market has
many assets, so we take the limit as n → ∞,

lim
n→∞

var(rp) = lim
n→∞

[
1
n

σ2 +
n − 1

n
ρσ2
]

= ρσ2.

Derivation of efficient portfolios

Let p be an efficient portfolio with mean expected return µp. To solve
for p, we must find the portfolio that returns µp in expectation with
the lowest possible variance. In other words, we must solve

min
w

var(rp) =
n

∑
i=1

n

∑
j=1

wiwjcov(ri, rj)

subject to the constraints that the portfolio weights add to 1,

1 =
n

∑
i

wi

and the portfolio does indeed return µp in expectation,

µp =
n

∑
i

wiµi,

where µi is the expected return on asset i, µi = E[ri].
We can write this problem as the following Lagrangian:1 1 Note that in the Lagrangian, we have

scaled the objective function by 1
2 .

Scaling the objective function by a
positive constants has no effect on the
solution, but in this case will make the
algebra a little bit easier.

L =
1
2

n

∑
i=1

n

∑
j=1

wiwjcov(ri, rj) + λ

[
1 −

n

∑
i

wi

]
+ ν

[
µp −

n

∑
i

wiµi

]
.

The first order necessary conditions are

∂L
∂wi

: 0 =
n

∑
j=1

wjcov(ri, rj)− λ − νµi ∀i ∈ 1, 2, 3, ..., n. (9.1)
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∂L
∂λ

: 0 = 1 −
n

∑
i

wi (9.2)

∂L
∂ν

: 0 = µp −
n

∑
i

wiµi (9.3)

The first order conditions (9.1), (9.2) and (9.3) give us n + 2 linear
conditions (note that (9.1) specifies n conditions) in n + 2 unknowns
(w1, w2, ..., wn, λ, ν). We do need some matrix algebra to solve for the
optimal portfolio, which we'll leave at this stage. We can still use the
first order conditions to do some interesting things.

Mutual Fund Theorems

We now have our first order conditions (9.1,9.2, and 9.3) which help
us characterise the mathematical properties of mean-variance efficient
portfolios in markets with many assets. In this section, we'll prove two
important theorems, known as the Mutual Fund Theorems. These
theorems allow us to characterise all efficient portfolios as portfolios
consisting of a small number of mutual funds. These mutual funds are
portfolios of many assets. It is useful to think of the FTSE 100 as being
an example of a mutual fund in this setting.

Under the assumption of mean-variance utility, we need at most
two mutual funds to construct any efficient portfolio. If we were to
relax the assumption of mean-variance utility then we would need
more mutual funds but the main insight would still hold true.

Theorem 9.1 The First Mutual Fund Theorem. Consider a market with
n risky assets available for investment. There exist two efficient portfolios
(denoted p1 and p2) such that any efficient portfolio p∗ can be written as a
portfolio of p1, p2.

This is referred to as the First Mutual Fund Theorem. We can think
of portfolios p1 and p2 as mutual funds holding efficient portfolios
of assets. Any investor maximising according to a mean variance
criterion does not need to optimise their portfolio over all assets, just
over the two mutual funds.
Proof.

In order to prove the theorem, we'll first need a couple of lemmas.2 2 A lemma is a building block for a larger
proof. This is helpful for two reasons.
First, breaking the proof into lemmas
can improve readability. Second, in
some circumstances it is useful to ues
one lemma to help prove multiple
theorems. In this case, I have used
lemmas just to improve readability.

Lemma 9.1 states that any portfolio constructed from two efficient
portfolios is itself efficient. Lemma 9.2 states that from any two portfo-
lios, we can construct a third portfolio that has expected return of any
value between the expected returns of the initial portfolios.
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Lemma 9.1 Let p1 and p2 be efficient portfolios, and p3 be a portfolio con-
sisting solely of portfolios p1 and p2 (that is, p3 = ap1 + (1 − a)p2 for some
a ∈ [0, 1]). Portfolio p3 is an efficient portfolio.

Proof. For each asset i, portfolio p3 holds proportion w3i = aw1i + (1−
a)w2i of its value in asset i. To show that portfolio p3 efficient, we need
to show that the first order conditions (9.1), (9.2) and (9.3) hold for p3.
We know that they hold for efficient portfolios p1, p2. Let's start with
(9.1):

n

∑
j=1

w3jcov(ri, rj)− λ − νµi =
n

∑
j=1

(aw1i + (1 − a)w2i)cov(ri, rj)− λ − νµi

= a
n

∑
j=1

w1icov(ri, rj) + (1 − a)
n

∑
j=1

w2icov(ri, rj)− λ − νµi

= a

[
n

∑
j=1

w1icov(ri, rj)− λ − νµi

]

+ (1 − a)

[
n

∑
j=1

w2icov(ri, rj)− λ − νµi

]
= a [0] + (1 − a) [0] = 0.

We can show the same result for conditions (9.2) and (9.3) (Left to
student). Portfolio p3 satisfies the n + 2 first order conditions, and
must therefore be an efficient portfolio.

Lemma 9.2 Let portfolios p1 and p2 have expected returns µ1, µ2 respec-
tively. Let µ∗ be in [µ1, µ2]. There exists some a such that portfolio p3 has
return µ3 = µ∗, where portfolio is a portfolio consisting solely of portfolios 1
and 2, p3 = ap1 + (1 − a)p2.

Proof. The expected return on portfolio p3 is

µ3 = aµ1 + (1 − a)µ2.

Setting µ3 = µ∗, solve for a and verify that a is between 0 and 1:

µ∗ = aµ1 + (1 − a)µ2,

a =
µ∗ − µ2

µ1 − µ2
,

which is in [0,1] for any µ∗ ∈ [µ1, µ2]. This completes the proof.
From Lemma 9.1, we know that any portfolio of two efficient port-

folios is itself efficient. From Lemma 9.2, we know that we can con-
struct an efficient portfolio with any mean return between the two
mean returns of the initial efficient portfolios.
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Let pmin be the efficient portfolio with the least expected return
of all efficient portfolios. Let pmax be the efficient portfolio with the
highest expected return of all efficient portfolios. By assumption, any
efficient portfolio has mean return between µmin and µmax. By Lemma
9.2, given any µ∗ we can construct a portfolio from pmin, pmax with
expected return µ∗. By Lemma 9.1, we know that this new portfolio is
an efficient portfolio. It follows that we can generate the entire set of
efficient portfolios from the two portfolios pmin, pmax.

Theorem 9.2 The Second Mutual Fund Theorem. Consider a market with
n risky assets available for investment. There also exists a risk free asset with
constant return r0. There exists an efficient risky portfolios (denoted p) such
that any efficient portfolio p∗ can be written as a portfolio of r0 and p.

Proof. The Second Mutual Fund Theorem can be thought of as a
corollary of the First Mutual Fund Theorem. In this case, the risk
free asset is the least return efficient portfolio (referred to as pmin in
the proof of the First Mutual Fund Theorem).
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Problems for Chapter 9

Exercise 9.1 State and prove the First Mutual Fund Theorem.

Exercise 9.2 Do the First and Second Mutual Fund Theorem's help us
explain trends in financial asset allocation?

Exercise 9.3 The First Mutual Fund Theorem appears to suggest that all
investors should hold just two portfolios, with weights only dependent on
their risk tolerance. If this is the case, why do some investors engage in stock-
picking?

Exercise 9.4 Find the returns for two stocks online (for example, from fi-
nance.yahoo.com). Find the mean returns, variances and covariances for
these two assets. Construct a two-asset portfolio frontier from this data, as in
Figure 9.1.

Exercise 9.5 Is the following statement true or false? Explain your answer.
In markets with a risk free asset, all mean-variance efficient portfolios have

no unsystematic risk.
(Hint: What is the role of the risk free asset in your explanation?)
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Coding exercises for Chapter 9

Coding Exercise 9.1 The purpose of this exercise is to visualise the practi-
cal limits of diversification. First, you'll calculate covariances between stock
returns for a selection of NYSE stocks. Then you'll use Propositions 9.1 and
9.1 to calculate the variances of equal weighted portfolios of uncorrelated
securities and securities correlated as in the data.

#-------------------------------------------------------------------------------
# Preamble
#-------------------------------------------------------------------------------

# Load packages

using UnicodePlots
using DataFrames

#-------------------------------------------------------------------------------
# Download and manipulate data
#
# We'll just use this data to get an average covariance between stocks.
# We can use this to approximate the gains from diversification across stocks.
#-------------------------------------------------------------------------------

println("Loading dataset.")
SP = DataFrame()
SP = readtable("StockPrices.csv")

# This data was originally downloaded from finance.google.com, although I've
# removed the script used for the download to save time.

# The date formatting is a bit unusual. We need to
# (a) Tell Julia how to read the dates by specifying a date format.
# (b) Change all the two-digit years into four-digit years.
# (c) Rename the date column.
# (d) Drop values older than 2 years, just to reduce the size of the dataset
# and speed things up.

println("Formatting dates.")
# (a)
df = Dates.DateFormat("dd-u-yy")
SP[:_Date] = Date(SP[:_Date],df)

# (b)
for i in 1:size(SP)[1]

if Dates.Year(SP[:_Date][i]) <= (Dates.Year(Dates.today()) - Dates.Year(2000))
SP[:_Date][i] = SP[:_Date][i] + Dates.Year(2000)

else
SP[:_Date][i] = SP[:_Date][i] + Dates.Year(1900)

end
end

# (c)
rename!(SP,:_Date,:Date)

# (d)
println("Deleting old values")
SP = SP[SP[:Date] .> Dates.today() - Dates.Year(2),:]
println(size(SP)[1]," entries remaining.")

# Lets just keep twenty thousand entries and delete the rest
println("Keep first twenty thousand entries")
SP = SP[1:20000,:]

# We don't need the Volume, Open, High, and Low columns
delete!(SP,[:Open ; :High ; :Low ; :Volume])

# Generate monthly returns
# Note that this will take some time, there are many entries.
println("Calculating monthly returns")
SP[:Return] = 0.0
lastprint = 0;
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for i in 1:size(SP)[1]
try

SP[:Return][i] = (
log(SP[:Close][i])
- log(SP[((SP[:Symbol] .== SP[:Symbol][i]) &

(SP[:Date] .== SP[:Date][i] - Dates.Month(1))),:][:Close][1])
)

catch
SP[:Return][i] = NA

end
try
if SP[:Symbol][i+1] != SP[:Symbol][i] && i > lastprint + size(SP)[1]/20

println("Current ticker: ",SP[:Symbol][i],
" | ",round(100*i/size(SP)[1],0),"% completed.")

lastprint = i;
end
end

end

# Delete NA values
println("Deleting NA values")
SP = SP[~isna(SP[:Return]),:]
println(size(SP)[1]," entries remaining.")

# Balance the panel by dropping symbols without a full complement of observations
for i in unique(SP[:Symbol])

if size(SP[SP[:Symbol] .== i,:])[1] < size(unique(SP[:Date]))[1]
SP = SP[SP[:Symbol] .!= i,:]

end
end

#-------------------------------------------------------------------------------
# Calculate variances and covariances
#-------------------------------------------------------------------------------

# Calculate excess returns, x - mean(x) for each asset.
SP[:ER] = 0.0
for i in 1:size(SP[:Symbol])[1]
SP[:ER][i] = (SP[:Return][i]-mean(SP[SP[:Symbol].==SP[:Symbol][i],:][:Return]))

end

# Initialise variance-covariance matrix
Mvar = zeros(size(unique(SP[:Symbol]))[1],

size(unique(SP[:Symbol]))[1])

# Calculate covariance terms
for i in 1:size(unique(SP[:Symbol]))[1]

for j in 1:size(unique(SP[:Symbol]))[1]
if Mvar[j,i] != 0
Mvar[i,j] = Mvar[j,i] # Exploit symmetry of the var-covar matrix

else
Mvar[i,j] = (sum(

(SP[SP[:Symbol].==unique(SP[:Symbol])[i],:][:ER]).*
(SP[SP[:Symbol].==unique(SP[:Symbol])[j],:][:ER]))/

size(unique(SP[:Date]))[1])
end

end
end

# Find the average covariance of pairs with i != j:
mucov = 0.5*sum(Mvar - diag(Mvar).*eye(Mvar))/(size(Mvar)[1]^2-size(Mvar)[1]);

# Find the average variance of individual stock returns
muvar = mean(diag(Mvar));

#-------------------------------------------------------------------------------
# Portfolio diversification and variances
#-------------------------------------------------------------------------------

# Set max number of assets
max_n = 20;

# (a) Uncorrelated assets (Proposition 7.1)

varpa = [muvar/n for n in 1:max_n];
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# (b) Correlated assets (Prop 7.2)

varpb = [muvar/n + mucov*(n-1)/n for n in 1:max_n];

# (c) Limit as n -> infinity

varpc = mucov;

# Plot results

plotdiv = lineplot(collect(linspace(1,max_n,max_n)),varpa,
title="The limits of diversification");

lineplot!(plotdiv,collect(linspace(1,max_n,max_n)),varpb);
lineplot!(plotdiv,collect(linspace(1,max_n,max_n)),varpc*ones(max_n))
ylabel!(plotdiv,"Portfolio variance")
xlabel!(plotdiv,"number of securities")



10
The Capital Asset Pricing Model

Some investments do have higher expected returns than others.
Which ones?
Well, by and large they're the ones that will do the worst in bad times.
William Sharpe
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Adding a risk-free asset

In the previous chapter we constructed the Markowitz bullet for a
market with many assets. At the end of that lecture, we proved The
Second Mutual Fund Theorem (Theorem 9.2).

The theorem stated that in a market with many risky assets and
one risk free asset, we could construct any mean-variance efficient
portfolio as a combination of the risk free asset and a single risky
mutual fund.

So, how does this work graphically? First we need to introduce a
risk free asset into our market. Figure 10.1 shows how we can con-
struct portfolios from our risky assets and the risk free rate.

Consider a portfolio constructed from the risk free asset x0 and
some risky asset (or risky portfolio) xj:

p = ax0 + (1 − a)xj (10.1)

The mean return on portfolio p is

µp = ar0 + (1 − a)µj. (10.2)

The standard deviation of returns on portfolio p is

σp =
√

a2σ2
0 + (1 − a)2σ2

j = (1 − a)σj. (10.3)

The relationship between µp and a is linear. As is the relationship
between σp and a. It follows that the portfolios that we can construct
trace a straight line in the (σ, µ) space between (r0, 0) and (µj, σj).

A sample of these portfolios combining risky assets with the risk
free asset are presented as dashed lines in Figure 10.1.

Mean-variance efficient portfolios are in blue.
Dashed schedules indicate portfolios with both risk free and risky

assets.
r0r0

σ

µ

Figure 10.1: Adding a risk free asset.
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Adding leverage

The portfolios constructed in Figure 10.1 contain positive proportions
of the risk free asset, combined with risky assets and portfolios. If we
can borrow at the risk free rate, then we can construct portfolios with
mean returns exceeding those of the risky portfolio.

In mathematical terms, we can start from Equations 10.1,10.2 and
10.3. Using leverage means borrowing to fund investments in the risky
portfolio. This corresponds to a negative value of portfolio weight a.

Graphically, Figure ?? shows how we can use leverage to extend
the set of feasible portfolios. Figure ?? shows the set of portfolios that
can be constructed from combinations of the risk free asset, and a
particular portfolio of risky assets on the efficient frontier, referred
to as the tangency portfolio. The tangency portfolio is marked by z in
Figure ??. The blue schedule traces these combinations, with the solid
section tracing the combinations including a positive share of the risk
free asset, the dashed section tracing the combinations that require
leverage.

r0

zInefficient

Infeasible

σ

µ

Figure 10.2: Efficient portfolios (blue)
with leverage (dashed)

Should we add leverage?

Is it realistic to believe that individual investors can borrow unlimited
amounts at the risk free rate?

The short answer is no. Certainly, if you or I were to try to borrow
large amounts from the bank to speculate in stocks, we would be
unlikely to be able to borrow at the risk free rate.

But, in order to determine whether or not this assumption really
matters for our analysis, we need to consider the following two ques-
tions. First, how likely is it that investors would wish to use leverage?
Second, can the payoffs of a levered portfolio be constructed without
borrowing?

We'll take the first question first. Certainly, private sector investors
hold positive amounts of risk free assets on average, with the govern-
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ment sector (typically) being a net supplier of risk free assets in the
form of government bonds. It must then be the case that the average
investor holds a positive proportion of their wealth in safe assets---in
other words, the average investor does not wish to borrow, even at
the risk free rate. This doesn't rule out the possibility that there are
some investors who wish to use leverage, but it does suggest that most
investors are happy not to use leverage.

Now, moving on to the second question. Consider an investor who
cannot borrow, but would wish to hold a levered portfolio. Without
access to borrowing at the risk free rate, this investor could still hold
derivatives. Futures, forwards and options all have the property that
they offer the investor exposure to movements in the underlying asset
with little initial investment. In other words, these products provide a
form of leverage, without the need for borrowing. Using derivatives,
we can construct portfolios that replicate the payoffs of levered port-
folios. It follows that it makes sense in our environment to allow for
leverage.

To summarise, it is clear that most investors are unable to bor-
row unlimited amounts at the risk free rate. However, most investors
would not wish to do so, and those who would wish to do so can
replicate their desired portfolios by using derivatives. Therefore, the
assumption of unlimited borrowing and lending at the risk free rate is
not unreasonable for our purposes.

I would never be 100 percent in stocks or 100 percent in bonds or cash.
Harry Markowitz

Sharpe ratio

Definition 10.1 The Sharpe ratio of asset i is defined as

si =
µi − µ0

σi

Proposition 10.1 Consider a market with many risky assets and unlimited
borrowing and lending at the risk-free rate r0. Let pi and pj be two mean-
variance efficient portfolios. The Sharpe ratios si and sj are equal:

si = sj.

Alternatively,
µi − µ0

σi
=

µj − µ0

σj
.

Proof is left to student.

Proposition 10.2 Consider a market with many risky assets and unlimited
borrowing and lending at the risk-free rate r0. Let pi be a mean-variance
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efficient portfolio. Let pj be a mean-variance inefficient portfolio. The Sharpe
ratio of pi is greater than the Sharpe ratio of pj,

si > sj.

Alternatively,
µi − µ0

σi
>

µj − µ0

σj
.

Proof is left to student.

The Capital Market Line

The Assuming unlimited borrowing and lending at the risk free rate,
the schedule of efficient portfolios is linear and upward sloping in
the (σ, µ) space with vertical intercept at the risk free rate r0. This
schedule is referred to as the Capital Market Line. The point on the
Capital Market Line where there is neither borrowing or lending at
the risk free rate is referred to as the Market Portfolio. This is the point
at which the portfolio weight on the portfolio of risky assets is 1. By
the Second Mutual Fund Theorem, every point on the Capital Market
Line is a combination of the Market Portfolio m and the risk free asset.

r0

m

CML

Inefficient

Infeasible

σ

µ

Figure 10.3: The Capital Market Line

All assets on the Capital Market Line have the same Sharpe ratio.
Any asset below the Capital Market Line has a Sharpe ratio lower than
the Sharpe ratio of any asset on the Capital Market Line. The slope
of the Capital Market Line is equal to the Sharpe ratio of all efficient
assets.

The Capital Asset Pricing Model

Theorem 10.1 The Capital Asset Pricing Model formula. Let µj denote the
expected return of asset j, and µm denote the expected return of the market
portfolio (the tangency portfolio). The risk free rate is denoted by r0, and
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investors are able to borrow and lend unlimited amounts at the risk free rate.
The expected return on asset j can be described as follows:

µj = r0 + β j(µm − r0), (10.4)

where β j =
cov(rj, rm)

var(rm)
.

Remember, asset pricing is about beliefs,
preferences and arbitrage. In the FVR,
investors' preferences entered the model
explicitly. In the CAPM, preferences are
proxied by the market risk premium
µm − r0, which captures how averse
investors are to fluctuations in the
overall stock market. Beliefs still enter
the model explicitly through β and µm,
both expectations.

Lets think about what this is saying. The expected return on asset j
depends only on the risk free rate, the expected return for the market
portfolio, the covariance of asset j returns with market returns and the
variance of market returns.

What does this list exclude? Lots of things! For example, the CAPM
predicts that the idiosyncratic component of an asset's risk does not
influence the expected returns of the asset. Only the systematic, or
correlated component of the asset's risk matters.
Proof. First, we need to reconsider the Fundamental Valuation Rela-
tionship from Chapter 7. We can write down the Fundamental Valua-
tion Relationship as follows

v′(w) = E[u′(c)(1 + rj)] ∀j

where v′(w) is the marginal value of initial wealth, u′(c) is the realised
marginal utility of consumption, and (1 + rj) is the realised gross
return to asset j. Consider the term in the expectation on the right
hand side, u′(c)(1 + rj) is the marginal contribution of an additional
unit of asset j to realised utility. The expectation E[u′(c)(1 + rj)] is
the expected increase in expected utility accruing from a marginal
increase in holdings of asset j.

The key message of the Fundamental Valuation Relationship is that
this marginal increase in expected utility accruing from additional
holdings of assets is the same for all assets. If it were the case that

E[u′(c)(1 + ri)] < E[u′(c)(1 + rj)],

then we should sell some of asset i and buy some of asset j.
OK, what does this mean for us? Let z be an investor's optimal port-

folio, and let xj be a risky asset that has positive weight in portfolio
z. The fundamental valuation relationship tells us that at the margin,
shifting wealth from portfolio z to asset xj should have no effect on
expected utility (E[u′(c)(1 + rz)] = E[u′(c)(1 + rj)]). At the margin,
small changes in the holdings of both assets have the same effect on
expected utility.

Graphically, this means that starting from optimal portfolio z, if we
construct portfolios from z and xj, the schedule of portfolios should
be tangent to the investor's indifference curves when the weight on
portfolio z is 1. Figure ?? plots this scenario. The green schedule I
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is the investor's indifference curve. The blue schedule is the Capital
Markets Line, tracing the efficient portfolios. The investor's optimal
portfolio is marked by z. The red curve illustrates the portfolios that
can be constructed from z and xj. At z, this portfolio is tangent to the
Capital Markets Line and the investor's indifference curve if and only
if the asset xj is in the optimal portfolio z.

Investor's indifference curve (green)
Portfolios constructed from z and xj (red)

r0

xj

z

CML
I

σ

µ

Figure 10.4: Efficient portfolio frontier
(blue)

Let p be a portfolio constructed from the investor's optimal portfo-
lio z, and the risky asset xj,

p = axj + (1 − a)z

The expected return and standard deviation for portfolio p are

µp = aµj + (1 − a)µz

σp =
√

a2σ2
j + (1 − a)2σ2

z + 2a(1 − a)σjz.

We know that when a is close to zero, the slope traced out by the
portfolios p in the volatility, mean returns space (σ, µ) is equal to the
slope of the Sharpe Ratio of portfolio z. That is,

lim
a→0

dµp

dσp
= sz. (10.5)

Lets consider the left hand side of Equation ??. Using the chain rule,
we know that

dµp

dσp
=

dµp

da

/
dσp

da
.

We can solve this, first taking the derivatives with respect to a.

dµp

da
= µj − µz
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dσp

da
=

2aσ2
j − 2(1 − a)σ2

z + 2(1 − 2a)σjz

2
√

a2σ2
j + (1 − a)2σ2

z + 2a(1 − a)σjz

=
aσ2

j − (1 − a)σ2
z + (1 − 2a)σjz√

a2σ2
j + (1 − a)2σ2

z + 2a(1 − a)σjz

This looks ugly, but remember that we are just interested in the limit
as a approaches zero. Most of the terms in ∂σp/∂a are just going to
cancel out.

lim
a→0

dµp

da
= µj − µz

lim
a→0

dσp

da
=

−σ2
z + σjz√

σ2
z

=
σjz − σ2

z

σz
.

It follows that
lim
a→0

dµp

dσp
=

σz

σjz − σ2
z
(µj − µz) (10.6)

Now, lets consider the right hand side of Equation ??. The Sharpe ratio
sz is equal to

sz =
µz − r0

σz
. (10.7)

Now we can substitute (??) and (??) into (??),

σz

σjz − σ2
z
(µj − µz) =

µz − r0

σz
.

Rearranging yields

µj − µz = (µz − r0)

(
σjz − σ2

z

σ2
z

)
,

µj − µz = (µz − r0)

(
σjz

σ2
z
− 1
)

,

µj = r0 +
σjz

σ2
z
(µz − r0).

This relationship holds for any mean-variance efficient portfolio z. The
market portfolio m is a mean-variance efficient portfolio, therefore

µj = r0 +
σjm

σ2
m
(µm − r0),

µj = r0 + β j(µm − r0).

We have shown that any risky asset in the market portfolio must sat-
isfy the CAPM equation. Any asset that does not satisfy the CAPM
must not be in the market portfolio, and consequently will not be held
by any mean-variance optimising investor.
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The Security Market Line

Figure ?? plots the Security Market Line for a market with many risky
assets. The Security Market Line (SML or Characteristic Line) is a
graphical representation of the CAPM equation, µj = r0 + β j(µm − r0),
plotted in the (β, µj) space. The vertical intercept is r0, the expected
return of a zero-β asset. The slope of the SML is the market risk pre-
mium, (µm − r0). The market portfolio m has beta 1 and expected
return µm, and sits on the Security Market Line.

1

r0

µm

SML

m

overvalued assets

Undervalued assets

β

µ
j

Figure 10.5: The Security Market Line

Assets sitting above the Security Market Line are undervalued with
respect to the CAPM. Their expected return is high relative to their
systematic risk (recall that β is a measure of the systematic component
of an asset's risk). Assets sitting below the Security Market Line are
overvalued with respect to the CAPM. Their expected return is low
relative to their systematic risk. As we can see in Figure ??, even assets
with expected return less than the market return can be undervalued.
Similarly, even assets with expected return exceeding the market
return can be overvalued.1 1 That is, there are green assets below

µm, and red assets above µm.

Determination of the market risk premium

Consider the CAPM formula (??),

µj = r0 + β j(µm − r0).

The term in brackets on the right hand side, µm − r0, is the market risk
premium, the expected excess return of the market portfolio over the
risk free rate.

In Lecture 7, we derived the Fundamental Valuation Relationship
(Theorem 7.1). Corollary 7.1 showed us that the expected excess re-
turn of an asset over the risk free rate is determined by the covariance
between the return of the asset and the marginal utility of the investor.
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From Equation 7.7 we have

µj = r0 −
cov(u′(c), rj)

E[u′(c)]
.

This relationship must also hold for the market portfolio:

µm − r0 = −cov(u′(c), rm)

E[u′(c)]
.

The market risk premium is driven by the covariance of market re-
turns with consumption marginal utility. Typically, consumption
and equity returns will move together, rising in booms and falling in
downturns (we can see this positive correlation between consumption
and returns to equity in Figure 7.1). This motivates a negative covari-
ance between consumption marginal utility and equity returns. It is
this negative covariance between consumption marginal utility and
equity returns that determine the market risk premium.

Next term, you'll study the Consumption-CAPM, a version of the CAPM
that further develops this link between consumption volatility and the market
risk premium.

How can we test the CAPM?

Consider the following regression model:

(rjt − r0t) = αj + β j(rmt − r0t) + γj(rmt − r0t)
2 + ∆jΩ′

t−1 + ε jt, (10.8)

where Ωt−1 is a vector of information known in period t − 1. This
could include past returns for asset j, it could also include accounting
information for asset j. The term ∆j represents a vector of coefficients
δkj corresponding to individual elements ωkt−1 of the information set
Ωt−1.

The CAPM predicts that the coefficient β̂ j should be significant
and non-zero. Significant, non-zero values for the coefficients α̂j, γ̂j, δ̂j

would be evidence against the CAPM.
If the coefficient α̂j were found to be significantly different from

zero, this would suggest that the intercept of the Capital Market Line
is not the risk free rate. For example, ff α̂j were found to be positive,
this would suggest that stocks are generally undervalued when com-
pared with the prediction of the CAPM. If γ̂j were found to be signif-
icantly different from zero, this would suggest that the relationship
between expected returns and β is non-linear. If δ̂kj were found to be
significantly different from zero, this would suggest that past informa-
tion is predictive of future relative performance of stocks, adjusted for
risk. Any of these would be evidence against the CAPM.

So, what happens when we do test the CAPM? Bailey (2005, Ch. 9)
has an excellent review. There are other sources provided on Moodle.
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Application of the CAPM: Network regulation

From your reading of Bailey (2005, Ch. 9), you will be well aware that
the CAPM does not perform well in empirical tests. The performance
of the CAPM can be improved by extending the baseline model to ac-
count for taxes, time varying β coefficients and time varying market
risk premia, but even with these extensions the CAPM has less pre-
dictive power than atheoretical statistical models. Nevertheless, the
CAPM still has some useful applications, one of which is in network
regulation.

Consider a natural monopoly network industry. This could be a
pipeline network carrying oil or gas. It could be an electricity lines
network, it could be a broadband network. Each of these networks are
natural monopolies, it is inefficient to have many competing networks.
These networks share a high initial cost of construction, with typically
a low short run marginal cost of providing additional service on the
network to consumers.

Network industries are typically subject to price regulation. From
ECON 1 we know that without regulation, the operating monopolies
would have an incentive to set prices above long run marginal costs,
resulting in inefficiently low output. Regulators aim to set prices near
long run marginal cost, where long run marginal cost includes both
the short run costs of maintaining the network and a market return to
the initial investment. This pricing would eliminate monopoly rents
while still providing the incentive to invest in new network capacity
when it is efficient to do so. If the regulated price is too low, there will
be no incentive for the network operator to invest in expanding the
network, even when the current network has reached capacity. If the
regulated price is too high, the firm will capture monopoly rents and
the market output will be below the efficient level.

The short run component of marginal cost is reasonably straight-
forward for regulators to measure. But, the long run component of
long run marginal costs, the fair return to the fixed capital investment,
is more difficult to measure. Regulators need to use an asset pricing
model to determine the fair return to fixed capital investment. The
CAPM is a popular model for this purpose. While the CAPM has less
predictive power than some atheoretical models, the CAPM is a trans-
parent model with few inputs, and these inputs (β, the market risk
premium) are difficult to manipulate.
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Problems for Chapter 10

Exercise 10.1 Prove Propositions ?? and ??.

Exercise 10.2 For each of the following examples, state whether and explain
why the information provided results in a contradiction. Use diagrams.

Assets xi and xj are both mean-variance efficient assets. r0 is the risk free
interest rate:

a. r0 = 2%, µi = 5%, σi = 10%, µj = 6%, σj = 15%.

b. r0 = 2%, µi = 5%, σi = 10%, µj = 6%, σj = 9%.

c. r0 = 2%, µi = 5%, σi = 10%, µj = 8%, σj = 20%.

d. µi = 5%, σi = 10%, µj = 6%, σj = 15%, µk = 8%, σk = 20%.

Exercise 10.3 State and prove the Capital Asset Pricing Model Theorem.

Exercise 10.4 What are the main predictions of the Capital Asset Pricing
Model? Are these predictions supported empirically?

Exercise 10.5 Consider the Capital Asset Pricing Model equation:

µj = r0 + β j(µm − r0),

where µj is the expected return on asset j, r0 is the risk free rate, the coefficient

β j =
cov(rj ,rm)

var(rm)
and µm is the expected return on the market portfolio.

a. Explain why µj is increasing in β j.

b. Explain why idiosyncratic risk does not directly affect expected returns
predicted by the CAPM.

c. What factors determine the market risk premium, µm − r0?

Exercise 10.6 The Capital Asset Pricing Model is widely used to determine
the market return to fixed assets in network monopoly regulation. What are
the strengths and weaknesses of the Capital Asset Pricing Model for this
application?

Exercise 10.7 This question is concerned with the assumption of unlimited
borrowing and lending at the risk free rate. This assumption is relied upon to
prove the Capital Asset Pricing Model.

a. Sketch the efficient frontier for an investor with unlimited borrowing and
lending at the risk free rate.

b. Sketch the efficient frontier for an investor with a low interest rate on
savings and a high interest rate on borrowing.
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c. How realistic is the assumption of unlimited borrowing and lending at the
risk free rate?

d. Explain, with a specific example, how an investor can use derivatives to
replicate levered portfolios, without the explicit need for borrowing.
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Coding exercise for Chapter 10

Coding Exercise 10.1 In this exercise, you will calculate realised beta
coefficients for a set of securities traded on the New York Stock Exchange.
Then, you will plot the realised mean returns for each security against their
realised beta coefficients.

How does this plot relate to the Security Market Line? Do your results
support the CAPM model?

#-------------------------------------------------------------------------------
# Preamble
#-------------------------------------------------------------------------------

# Load packages

using Gadfly
using DataFrames

#-------------------------------------------------------------------------------
# Download and manipulate data
#
# We'll just use this data to get an average covariance between stocks.
# We can use this to approximate the gains from diversification across stocks.
#-------------------------------------------------------------------------------

println("Loading dataset.")
SP = DataFrame()
SP = readtable("StockPrices.csv")

# This data was originally downloaded from finance.google.com, although I've
# removed the script used for the download to save time.

# The date formatting is a bit unusual. We need to
# (a) Tell Julia how to read the dates by specifying a date format.
# (b) Change all the two-digit years into four-digit years.
# (c) Rename the date column.

println("Formatting dates.")
# (a)
df = Dates.DateFormat("dd-u-yy")
SP[:_Date] = Date(SP[:_Date],df)

# (b)
for i in 1:size(SP)[1]

if Dates.Year(SP[:_Date][i]) <= (Dates.Year(Dates.today()) - Dates.Year(2000))
SP[:_Date][i] = SP[:_Date][i] + Dates.Year(2000)

else
SP[:_Date][i] = SP[:_Date][i] + Dates.Year(1900)

end
end

# (c)
rename!(SP,:_Date,:Date)

# We don't need the Volume, Open, High, and Low columns
delete!(SP,[:Open ; :High ; :Low ; :Volume])

# Read in total market data

RussellTR = readtable("RussellTR.csv")
dfm = Dates.DateFormat("yyyy-mm-dd")
RussellTR[:date] = Date(RussellTR[:date],dfm)

RussellTR = RussellTR[RussellTR[:value].>0,:] # Remove NaN values
rename!(RussellTR,[:date ; :value],[:Date ; :Value]) # Comparable col names

#-------------------------------------------------------------------------------
# The dataset is too large to work with effectively.
# We'll aggregate by end-of-month price.
#-------------------------------------------------------------------------------
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# First we need to identify end-of-month dates.

SP[:EOM] = 0
SP[:EOM][1] = 1
for i in 2:size(SP)[1]

if (SP[:Symbol][i] == SP[:Symbol][i-1] &&
Dates.Day(SP[:Date][i]) > Dates.Day(SP[:Date][i-1]))
SP[:EOM][i] = 1

end
end

# Now delete all dates that are not end-of-month

SP = SP[SP[:EOM] .== 1,:]
delete!(SP,[:EOM])

println("After aggregating months, there are")
println(size(SP)[1],

" observations remaining for ",
size(unique(SP[:Symbol]))[1],
" securities.")

# Now do the same for the index

RussellTR[:EOM] = 0
RussellTR[:EOM][size(RussellTR)[1]] = 1
for i in 1:size(RussellTR)[1]-1

if (Dates.Day(RussellTR[:Date][size(RussellTR)[1] - i])
> Dates.Day(RussellTR[:Date][size(RussellTR)[1] - (i-1)]))
RussellTR[:EOM][size(RussellTR)[1] - i] = 1

end
end
RussellTR = RussellTR[RussellTR[:EOM] .== 1,:]
delete!(RussellTR,[:EOM])

#-------------------------------------------------------------------------------
# Generate monthly returns series
#-------------------------------------------------------------------------------

SP[:RM] = 0.0 # Initialise return column
for i in 1:size(SP)[1]

try
if SP[:Symbol][i] == SP[:Symbol][i+1]

SP[:RM][i] = (SP[:Close][i] - SP[:Close][i+1])/SP[:Close][i+1]
else SP[:RM][i] = NA
end

catch SP[:RM][i] = NA
end

end

# Drop NA values
SP = SP[.~isna.(SP[:RM]),:];

RussellTR[:RM] = 0.0 # Initialise return column
for i in 1:size(RussellTR)[1]

try
RussellTR[:RM][i] = (RussellTR[:Value][i] - RussellTR[:Value][i-1])/RussellTR[:Value][i-1]

catch RussellTR[:RM][i] = NA
end

end

# Drop NA values
RussellTR = RussellTR[.~isna.(RussellTR[:RM]),:];

# Drop observations over 10 years old, drop securities with less than
# 10 years of observations.
SP = SP[SP[:Date] .> Dates.today() - Dates.Year(10),:]
for i in unique(SP[:Symbol])

if size(SP[SP[:Symbol] .== i,:])[1] < size(unique(SP[:Date]))[1]
SP = SP[SP[:Symbol] .!= i,:]

end
end

println("After dropping short lived securities, there are")
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println(size(SP)[1],
" observations remaining for ",
size(unique(SP[:Symbol]))[1],
" securities.")

RussellTR = RussellTR[((RussellTR[:Date] .<= maximum(unique(SP[:Date]))) .&
(RussellTR[:Date] .>= minimum(unique(SP[:Date])))),:]

#-------------------------------------------------------------------------------
# Calculate variances and covariances
#-------------------------------------------------------------------------------

# Calculate excess returns, x - mean(x) for each asset.
SP[:ER] = 0.0
for i in 1:size(SP[:Symbol])[1]
SP[:ER][i] = (SP[:RM][i]-mean(SP[SP[:Symbol].==SP[:Symbol][i],:][:RM]))

end

RussellTR[:ER] = 0.0
for i in 1:size(RussellTR)[1]
RussellTR[:ER][i] = (RussellTR[:RM][i]-mean(RussellTR[:RM]))

end

# Add market return to SP dataframe
SP[:RZ] = 0.0
for i in 1:size(SP)[1]

try SP[:RZ][i] = RussellTR[RussellTR[:Date] .== SP[:Date][i],:][:RM][1]
catch SP[:RZ][i] = NA;
end

end

# Delete NA values
SP = SP[.~isna.(SP[:RZ]),:];

# Calculate betas
beta = zeros(size(unique(SP[:Symbol]))[1]);
for i in 1:size(unique(SP[:Symbol]))[1]
symbol = unique(SP[:Symbol])[i]
bcov = cov(SP[SP[:Symbol].==symbol,:][:RM],SP[SP[:Symbol].==symbol,:][:RZ]);
bvar = var(SP[SP[:Symbol].==symbol,:][:RZ]);
beta[i]= bcov/bvar;

end

# Calculate expected returns
mur = zeros(size(unique(SP[:Symbol]))[1]);
for i in 1:size(unique(SP[:Symbol]))[1]
symbol = unique(SP[:Symbol])[i]
mur[i] = mean(SP[SP[:Symbol].==symbol,:][:RM]);

end

# fit linear model to betas / expected returns
x = [ones(beta) beta];
theta = (x'*x)\x'*mur;

a = Scale.color_discrete_hue();
#define_color("color2", a.f(3)[2]);

plotbetamur = plot(layer(x = beta,
y = mur,
Geom.point,
intercept=[theta[1]], slope=[theta[2]],
Geom.abline),

layer(x=beta,y=mur,intercept=[0], slope=[mean(RussellTR[:RM])],
Geom.abline(color=a.f(3)[2])),

Guide.title("Security market line: data vs model prediction"),
Guide.xlabel("security beta"),
Guide.ylabel("mean return"),
Coord.cartesian(xmin=0.0,xmax=3,ymin=-0.01,ymax=0.03),
Guide.manual_color_key("", ["Data","CAPM"], [a.f(3)[1],a.f(3)[2]]),

)
draw(PNG("plot_capm.png", 4inch, 3inch), plotbetamur)
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